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Abstract

Many age-related degenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s diseases and type II diabetes, are associated
with the accumulation of amyloid fibrils. The protein components of these amyloids vary widely and the mechanisms of pathogenesis remain
an important subject of competing hypotheses and debate. Many different mechanisms have been postulated as significant causal events
in pathogenesis, so understanding which events are primary and their causal relationships is critical for the development of more effective
therapeutic agents that target the underlying disease mechanisms. Recent evidence indicates that amyloids share common structural properties
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hat are largely determined by their generic polymer properties and that soluble amyloid oligomers may represent the primary
tructure, rather than the mature amyloid fibrils. Since protein function is determined by the three-dimensional structure, the fact tha
hare generic structures implies that they may also share a common pathological function. Amyloid oligomers from several differe
hare the ability to permeabilize cellular membranes and lipid bilayers, indicating that this may represent the primary toxic mec
myloid pathogenesis. This suggests that membrane permeabilization may initiate a core sequence of common pathological ev

o cell dysfunction and death that is shared among degenerative diseases, whereas pathological events that are unique to one p
f amyloid or disease may lie in up stream pathways leading to protein mis-folding. Although, these upstream events may be u
articular disease related protein, their effects can be rationalized as having a primary effect of increasing the amount of mis-foldedy
myloidogenic proteins.
2005 Elsevier Inc. All rights reserved.
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. Introduction

Therapeutic strategies that target disease mechanisms hold
onsiderable promise for effectively treating or curing amy-
oid related degenerative diseases. The dilemma for medical
cientists is to decide which of the pathological mecha-
isms to target for therapeutic development. Degenerative
iseases share a striking number of common pathological

eatures or events, such as evidence of membrane dam-
ge, oxidative stress, mitochondrial dysfunction up regula-

ion of autophagy and cell death. Which mechanisms are
rimary and are they related in a causal sequence? In addi-

ion to the accumulation amyloid fibrils, these diseases also

∗ Tel.: +1 949 824 6081; fax: +1 949 824 8551.
E-mail address: cglabe@uci.edu.

show evidence of oxidative damage, ion and metal dysh
ostasis, aberrant signal transduction, mitochondrial dys
tion and cell death. Recent evidence suggests that am
oligomers, which represent intermediates in the fibril
mation process may be primarily responsible for amy
pathogenesis, rather than the mature fibrils that acc
late as large aggregates[25,36]. The purpose of this revie
is to explore the hypothesis that these common dis
mechanisms may be causally related to common prop
of amyloid oligomers that are shared among degener
disease.

2. Common pathway of amyloid fibril formation

Amyloid fibrils accumulate in degenerative disease
a consequence of the intermolecular hydrogen bondin
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extended polypeptide strands that arise as a consequence of
protein mis-folding. Amyloids from different diseases may
share a common pathway for fibril formation. The initiating
event is protein mis-folding or denaturation, which results
in the acquisition of the ability to aggregate in an infinitely
propagating fashion. Quasi-stable intermediate aggregates
ranging from dimers up to particles of a million Dalton
or greater have been observed by a variety of methods
[12,21,26,28,55,58]. Soluble spherical aggregates of approx-
imately 3–10 nm have been observed for many different
types of amyloids by electron and atomic force microscopy
[2,26,37] and these spherical oligomers appear to repre-
sent intermediates in the pathway of fibril formation. These
spherical particles have also been called micelles, prefibrillar
aggregates, protofibrils, and ADDLs[10,26,36,40,55,58]. At
longer aggregation times, curvilinear fibers form that have
a beaded appearance form. These structures have also been
called “protofibrils” because they appear to be formed by
the coalescence of the spherical subunits[26]. Finally, these
structures either anneal or undergo a conformational change
to form mature 6–10 nm cross-� fibrils that have either a
smooth or helical morphology[22,26]. This same spectrum
of aggregation intermediates and morphologies have been
observed for many types of amyloids, such as�-synuclein
[14], islet amyloid[30] and non-disease associated “neoamy-
loids” [11].
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but yet is shared in common among all types of amyloid
oligomers. The anti-oligomer antibody also generically
inhibits the toxicity of soluble oligomers examined in
vitro.

4. Common primary mechanism of pathogenesis

Since different amyloid oligomers share a common struc-
ture and they are generically toxic to cells, this predicts
that they have the same primary mechanism of toxicity in
degenerative diseases. What is the primary mechanism of
amyloid oligomer toxicity? If soluble oligomers have a com-
mon mechanism of toxicity, it predicts that they would act
on the same primary target. This restricts number of poten-
tial targets to ones that are accessible to all of the different
types of oligomers. Some amyloids arise from cytosolic pro-
teins, while others are derived from secretary or extracellular
proteins. This suggests that the primary target of oligomers
must be accessible to both the cytosolic and extracellular
compartments. The most obvious target that is accessible
to both the cytosolic and extracellular compartments is the
plasma membrane that forms the interface between the two
compartments.

A growing body of evidence suggests that membrane
permeabilization by amyloid oligomers may represent the
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. Common structure of amyloid oligomers and
brils

Amyloids also have a number of structural feature
ommon. Amyloid fibrils have a “cross-�” structure, which

ndicates that the backbone hydrogen bonding is paral
he fibril axis [18,34,35]. Amyloids also bind characteri
ic dyes, like Congo red and thioflavin dyes, which may

reflection of their common cross-� structure[38]. More
ecent structural characterization indicates that amyloid
ils represent a generic, intermolecular hydrogen bo
tructural motif that is not commonly represented in na
rotein structures. Spectroscopic structural analysis of
ral different amyloids indicates that the polypeptide is c
only arranged as parallel-� strands in a sheet where t
mino acid sequence is in exact register[3,6–8,17,41,56.
he findings that several major disease related fibril s

ures are parallel and in exact register suggest that this
epresent a common structural motif for other amyloid
ell.
Amyloid oligomers also display a common structu

otif that is distinct from fibrils based on the obser
ion that a conformation dependent antibody specific
ecognizes a common epitope on amyloid oligom
ut not fibrils, monomers or natively folded proteins
any different types of proteins[32]. This indicates tha

he antibody recognizes a generic polypeptide back
pitope that is independent of the amino acid seque
ommon, primary mechanism of pathogenesis of amy
elated degenerative diseases. An increase in mem
ermeability and intracellular calcium concentration

ong been associated with amyloid toxicity, although the
ome disagreement as to the mechanism by which amy
ncrease intracellular calcium[42,44]. Amyloidogenic pro
eins and peptides, such as A�, �-synuclein, polyglutamin
nd IAPP have been widely reported to form discrete p
r single channels in membranes[4,5,29,37,47,48]. This has

ed to the formulation of the “channel hypothesis” to acco
or the mechanism of amyloid pathogenesis in degener
isease[31]. Common properties of these channels inc

he irreversible insertion of discrete, single channels
isplay heterogeneous conductance levels and ion sele

hat are inhibited by Congo red and Zn2+ ions[31]. Amyloid
ligomers specifically increase lipid bilayer conducta
egardless of the sequence, while fibrils and soluble
olecular weight species have no observable effect[10,33].
sing homogeneous and pure populations of amy
ligomers, we found that this increase in membrane con

ance is not ion selective and we did not observe discrete
r single channel formation[33]. The membrane permea

izing activity of pure oligomers is reversible and can be in
ted by anti-oligomer antibody, but is not inhibited by Con
ed [33]. Atomic force microscope images of oligom
reated membranes are consistent with the interpret
hat oligomers disrupt membranes without forming disc
ores[23]. The explanation for the discrepancy between
umerous reports of single channel insertion and our fa

o observe discrete pores or single channels by am
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oligomers are not yet clear, but we are in general agreement
on the points that amyloids permeabilize membranes and
that the aggregation state of the peptide is important for this
activity.

Amyloid oligomers also permeabilize cell membranes
[10,16,46]. Extracellular applications of oligomeric forms
several types amyloidogenic proteins and peptides cause
a rapid and large increase in cytosolic free [Ca], whereas
equivalent amounts of soluble monomer and fibrils have no
detectable effect[16]. The Ca2+ influx is not blocked by
cobalt, indicating that the effect is not due to activation of
existing Ca channels. Amyloid oligomers also caused a rapid
leakage of fluorescent dyes from cells loaded with fluo-3 and
calcein, indicating that molecules other than ions are also
mobilized in response to oligomers[16]. This is in agreement
with reports of oligomer induced leakage of fluorescent dyes
from phospholipid vesicles[2,30,50]. Oligomer treatment of
cells results in an increase in cytosolic Ca2+ in Ca2+-free
medium and that this increase can be largely eliminated by
pretreatment with thapsigargin to deplete endoplasmic reticu-
lum calcium[16,46]. This suggests that external application
of oligomers leads to liberation of Ca2+ from intracellular
stores. This is consistent with reports that oligomers may
subsequently penetrate into cells where they similarly dis-
rupt intracellular membranes to cause leakage of sequestered
Ca[10], but it could also result as a consequence of altered
i

5. Common pathogenic pathways

The permeabilization of membranes by amyloid
oligomers that has been reported as a common component
of amyloid toxicity may represent the primary common
mechanism of amyloid pathogenesis (Fig. 1). It may initiate
a series of downstream pathological events that represents
a common pathway of degeneration in amyloid-related
diseases. These events that may lie immediately downstream
from membrane permeabilization may constitute a core
group of common pathological events that ultimately result
in cell dysfunction and death. All of the pathological events
that are held in common by amyloid-related degenerative
diseases may be part of this core group. A wide variety
of transmembrane signaling processes and the production
of reactive oxygen species could be directly related to
membrane perturbation by soluble oligomers[43,51]. Even
though soluble oligomers may not be acutely toxic in vivo
as they are in vitro, the chronic leakage of ions across
the plasma membrane may be sufficient to disrupt normal
neuronal function, long term potentiation[57] and serve as a
source of chronic stress in maintaining a normal membrane
potential.

Membrane permeabilization by amyloid oligomers and
the concomitant increase in intracellular calcium may be the
proximate initiator of several pathogenic pathways, includ-
i

F ses. A loid oligo
i
n
p
a

ntracellular signaling.

ig. 1. Common and disease-specific pathways in degenerative disea

s the primary pathogenic event common to amyloid-related degenerative di
ot all amyloid diseases. It is not yet clear whether these common pathway
athways. Disease specific events and pathways are postulated to lie upst
mount of mis-folded, amyloidogenic proteins.
ng reactive oxygen species (ROS) production[52], altered

ccording to this scheme, the permeabilization of membranes by amymers

seases. This initiates a series of pathogenic pathways that are common to most, if
s are related in a causal sequence or whether they constitute parallel, synergistic
ream from amyloid oligomerization and have the primary effect of increasingthe
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signaling pathways[43,51] and mitochondrial dysfunction
[54]. Many signaling pathways are regulated directly or
indirectly by intracellular Ca2+ levels or membrane depo-
larization, including pathways leading to up regulation of
autophagy and cell death. Membrane permeabilization by
amyloid oligomers may also induce an oxidative stress
response in cells[1,52]. Accumulation of Ca2+ in the matrix
of mitochondria leads to an increase in ROS production,
cytochromeC release and apoptosis[9]. Amyloid oligomers
may also directly permeabilize the mitochondrial membrane
[27]. Thus, the increase in energy demand necessary to main-
tain ion homeostasis and membrane polarization may also be
a source of mitochondrial stress. Mitochondrial dysfunction
may also feed back to upstream pathways that regulate the
level of mis-folded proteins because many chaperones and
the proteasome system utilize ATP. Chronic inflammation
may also be a component of the core degenerative pathway
as it is frequently observed in neurodegenerative diseases
[19,20,45].

The accumulation of autophagic vesicles has been increas-
ingly recognized as a common component of degenerative
diseases[13,39]. The up regulation of autophagy may be a
protective response to sequester and degrade toxic amyloid
aggregates. Up regulation of autophagy reduces polyglu-
tamine pathogenesis in transgenic fly and mouse models of
HD [49]. The fact that amyloid aggregates and autophagic
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mis-folding to give rise to amyloid oligomers. ROS produc-
tion may also facilitate the mis-folding of proteins by covalent
adduct formation.

One of the most striking examples of disease specific
pathways is the cell type specificity of amyloid related degen-
erative diseases. In many cases, the cells at risk represent only
a small fraction of the cells in which a particular amyloido-
genic protein is expressed. This is often interpreted as an
indicating that these particular cells are uniquely sensitive to
degeneration by a specific mechanism, but the reason for this
specificity is not entirely clear. It may also reflect differences
in the synthesis, trafficking and metabolism of proteins in
ways that uniquely give rise to mis-folded protein accumu-
lation. It is also possible that the cell type specificity may be
a reflection of whether a particular cell has an effective stem
cell population. Amyloid toxicity may be inconsequential if
a cell dies and is replaced by another perfectly functional cell
and if the production of new cells can keep up with cell loss.
This factor may explain why the majority of amyloid-related
diseases are neurodegenerative.

7. Implications for therapeutic development

Understanding the relationships between pathological
events pathways has significant implications for therapeu-
t they
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esicles accumulate in degenerative diseases sugges
his response is not entirely successful. The failure to
iently clear amyloid aggregates may also contribut
athogenesis by stimulating autophagic programmed
eath[15,53].

. Disease specific pathways

In addition to a common core of pathogenic pathw
nique, disease-specific events and pathways also cha

ze degenerative diseases. The simplest way of rationa
heir effects is to postulate that they lie upstream of the c
on pathways and have the common net effect of increa

he amount of mis-folded, aggregation competent pro
Fig. 1). The most obvious class of disease specific ev
s mutations in the proteins that accumulate as amyloi
isease. These mutations are often associated with inhe
arly onset forms of disease. Mutations destabilize the n

olded structure of proteins, so the primary effect of th
utations may be to favor the accumulation of mis-fol
roteins. Other disease-specific mutations occur in gene
o not encode proteins that accumulate as amyloids,
s the presenilins in AD and parkin in PD. These sec
ite mutations may also have the primary effect in increa
he concentration of aggregation prone proteins and pep
resenilin mutations alter the proteolytic processing of A

avoring the production of the longer and more aggrega
rone A�-42 isoform[24]. Covalent modification of protein

ike oxidation, glycation and racemization may also prom
t

-

,

ic development. Which pathways are primary and are
rdered in a causal sequence? Targeting downstream
ays may not be effective if there are multiple, para
athways or if the target is downstream from a signific
ource of pathogenesis. Targeting disease specific path
ike A�-production, may be effective, but their effectiven

ay be restricted to that specific disease. Focusing o
rimary mechanism may be the most effective strateg
ultiple downstream pathways ensue from a single st

us, even if this target is difficult to approach. If the prim
echanism of pathogenesis is common to degenerativ
ases as recent evidence suggests, therapeutics that tar
ommon mechanism have the added benefit of being effe
reatments for a broad range of age-related human dise
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