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ABSTRACT:	Perovskite	solar	cells	are	notoriously	moisture-sensitive,	but	recent	encapsulation	strategies	have	demonstrated	their	
potential	application	as	photoelectrodes	in	aqueous	solution.	However,	perovskite	photoelectrodes	rely	on	precious	metal	co-cata-
lysts	and	their	combination	with	biological	materials	remains	elusive.	Here,	we	interface	[NiFeSe]	hydrogenase	from	Desulfovibrio	
vulgaris	Hildenborough,	a	highly	active	enzyme	for	H2	generation,	with	a	triple	cation	mixed	halide	perovskite.	The	perovskite-hy-
drogenase	photoelectrode	produces	a	photocurrent	of	−5	mA	cm−2	at	0	V	vs.	RHE	during	AM1.5G	irradiation,	is	stable	for	12	h	and	
the	hydrogenase	exhibits	a	turnover	number	of	1.9×106.	The	positive	onset	potential	of	+0.8	V	vs.	RHE	allows	its	combination	with	a	
BiVO4	water	oxidation	photoanode	to	give	a	self-sustaining,	bias-free	photoelectrochemical	tandem	system	for	overall	water	splitting	
(solar-to-hydrogen	efficiency	of	1.1%).	This	work	demonstrates	the	compatibility	of	perovskite	elements	with	biological	catalysts	to	
produce	hybrid	photoelectrodes	with	benchmark	performance,	which	establishes	their	utility	in	semi-artificial	photosynthesis.		

As	a	globally	abundant	and	economical	energy	source,	solar	
energy	 is	 the	 fastest	 growing	 renewable	 alternative	 to	 fossil	
fuels.1,	2	Artificial	photosynthesis	uses	sunlight	for	the	produc-
tion	of	renewable	chemical	fuels,	so-called	solar	fuels,	thus	ad-
dressing	 the	 intermittency	 limitations	 of	 photovoltaic	 (PV)	
technologies.3,	4	Solar	fuel	synthesis	can	be	achieved	by	direct	
coupling	of	an	efficient	light	absorber	to	a	fuel-producing	cata-
lyst.5,	6	Organic-inorganic	lead	halide	perovskites	have	received	
much	attention	due	to	their	low	production	costs	and	promis-
ing	 PV	 cell	 efficiencies,	 currently	 reaching	 up	 to	 25.2%.2,	 7-10	
However,	moisture,	 air	 and	 temperature	 instability	has	 chal-
lenged	 the	 use	 of	 perovskites	 in	 photoelectrochemical	 (PEC)	
devices.11,	12	Encapsulation	layers	such	as	eutectic	metal	alloys,	
metal	foils	and	epoxy	resin	have	improved	the	operation	life-
time	of	 solution	 immersed	perovskite-based	photoelectrodes	
from	 seconds	 to	 hours.11,	 13-17	 However,	 all	 H2-evolving	 PEC	
perovskite	photocathodes	have	employed	high	cost,	low	abun-
dance	Pt	nanoparticles	as	the	co-catalyst	to	date.	
Semi-artificial	photosynthesis	combines	the	evolutionarily-

optimized	activity	of	 biological	 catalysts	 such	 as	 isolated	 en-
zymes	 with	 synthetic	 photoabsorbers.18-21	 Hydrogenases	
(H2ases)	are	reversible	and	highly	efficient	H2	production	en-
zymes	with	a	per	active-site	activity	matching	Pt.22-24	The	inte-
gration	 of	 H2ase	with	 Si	 and	 Cu2O	 photocathodes	 has	 previ-
ously	been	achieved,25-29	but	the	combination	with	a	perovskite	
has	 remained	 inaccessible	 due	 to	 the	moisture	 sensitivity	 of	
this	photoabsorber	and	difficulty	of	achieving	a	productive	en-
zyme-photoabsorber	interface.	
Here,	 a	 perovskite-H2ase	 photocathode	 is	 presented,	 real-

ized	 by	 an	 encapsulation	 system	 that	 protects	 the	 photoab-
sorber	and	provides	a	biocompatible,	bespoke	porous	scaffold	
for	the	enzyme.	This	semi-artificial	photocathode	enabled	com-
bination	with	 a	 BiVO4	water	 oxidation	 photoanode	 for	 bias-
free,	tandem	PEC	water	splitting	into	H2	and	O2	(Figure	1).	

	

Figure	1.	Schematic	representation	of	the	tandem	PEC	cell	con-
sisting	 of	 a	 FM-encapsulated	 perovskite	 photocathode	 with	
H2ase	integrated	into	an	IO-TiO2	layer	and	a	BiVO4	photoanode.	
TiCo	 refers	 to	 the	 water	 oxidation	 layer	 precursor:	
[Ti4O(OEt)15(CoCl)].	 PCBM:	 [6,6]-phenyl	 C61	 butyric	 acid	me-
thyl	ester.	PEIE:	polyethylenimine.	

	
Optimized	 cesium	 formamidinium	 methylammonium	

(CsFAMA)	triple	cation	mixed	halide	perovskite	devices	with	a	
Field’s	metal	(FM)	protection	layer	were	assembled	and	char-
acterized	as	previously	reported	(Figure	1;	see	SI	Experimental	
Procedures	and	Figure	S1	for	details).15	Enzymes	have	been	in-
tegrated	 with	 high	 loading	 into	 hierarchically	 structured,	
macro	 and	 mesoporous,	 inverse	 opal	 (IO)	 metal	 oxide	 scaf-
folds.25,	 30,	 31	 TiO2,	 an	 established	 enzyme	 interface,	 was	 se-
lected	for	its	stability	and	conductivity	under	reducing	condi-
tions.25,	32,	33	The	high-temperature	(>100	°C)	sensitivity	of	the	
perovskite	prevented	 in	situ	annealing	of	the	IO-TiO2	directly	
on	 the	 FM	 surface.	 Therefore,	 anatase	 TiO2	 nanoparticles	
(~21	nm	Ø)	were	 first	 co-assembled	with	 polystyrene	 beads	
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(750	nm	Ø)	on	Ti	foil	and	annealed	at	500	°C	to	give	Ti|IO-TiO2	
(Figure	S2).	The	geometrical	surface	area	of	the	IO-TiO2	scaf-
fold	was	0.28	cm2	with	an	IO-TiO2	film	thickness	of	15	μm.	The	
Ti|IO-TiO2	 was	 then	 joined	 to	 the	 protected	 perovskite	 by	
briefly	melting	 the	FM	sheet	via	 a	Peltier	 thermoelectric	ele-
ment	(at	~70	°C)	and	an	epoxy	resin	was	used	to	seal	the	edges	
to	 give	 the	 encapsulated	 photovoltaic-integrated	 photocath-
ode:	PVK|IO-TiO2	
[FTO-glass|NiOx|perovskite|PCBM|PEIE|Ag|FM|Ti|IO-TiO2].	
A	[NiFeSe]	H2ase	from	Desulfovibrio	vulgaris	Hildenborough	

(DvH)	was	selected	due	to	its	considerable	H2	evolution	activity	
compared	to	DvH	[NiFe]	H2ase,	and	purified	and	characterized	
as	 previously	 reported.23,	 33-37	 The	 selenocysteine	 residue	
(Sec489)	in	the	active	site	(Figure	S3)	causes	improved	O2	tol-
erance,35,	37-40	which	is	beneficial	for	its	application	in	overall	
water	splitting.	The	[NiFeSe]	H2ase	(5	μL,	50	pmol)	was	drop-
cast	onto	Ti|IO-TiO2	and	left	to	saturate	the	film	for	30	min	in	a	
N2	 atmosphere.	 Protein	 film	 voltammetry	 of	 the	
Ti|IO-TiO2|H2ase	 electrode	 in	 a	 three-electrode	 configuration	
demonstrated	 that	 proton	 reduction	 occurred	 with	 minimal	
overpotential,	indicative	of	efficient	charge	transfer	at	the	TiO2-
hydrogenase	interface	(Figure	S4).	The	quality	of	the	interface	
can	be	attributed	to	the	well-known	strength	of	protein	binding	
to	TiO2,	an	effect	which	may	be	further	accentuated	by	polari-
sation	 of	 the	 TiO2	 surface.25,	 33,	 41	 The	 Ti|IO-TiO2|H2ase	 elec-
trode	 displayed	 current	 densities	 of	 −2.5	mA	cm−2	with	 high	
stability	 for	 several	 hours	 at	 an	 applied	 potential	 (Eapp)	 of	
−0.5	V	vs.	RHE	under	N2,	including	some	robustness	in	the	pres-
ence	of	O2.	A	Faradaic	efficiency	for	H2,	FEH2,	after	24	h	of	78%	
was	 determined	 by	 gas	 chromatography.	 The	 Eapp	 of	
−0.5	V	vs.	RHE	was	applied	to	reflect	the	estimated	perovskite	
photovoltage	of	0.9	V	in	the	PEC	experiments,	where	an	Eapp	of	
+0.4	V	vs.	RHE	has	been	applied	(see	below).	
Protein-film	 photoelectrochemistry	 of	 the	

PVK|IO-TiO2|H2ase	 photocathode	 (three-electrode	 configura-
tion,	H2ase	integrated	as	above)	was	conducted	at	25	°C	under	
chopped	 simulated	 solar	 light	 irradiation	 (100	mW	cm−2,	
AM1.5G).	 The	 photocathode	 was	 irradiated	 from	 the	 back,	
which	prevented	photoexcitation	of	TiO2.	Linear	sweep	voltam-
metry	 (LSV)	 of	 the	 assembled	 PVK|IO-TiO2|H2ase	 electrode	
showed	a	cathodic	onset	potential	at	+0.8	V	vs.	RHE	and	photo-
current	densities	of	−5	mA	cm−2	at	0	V	vs.	RHE	(Figure	2a).	
Controlled	 potential	 photoelectrolysis	 (CPPE)	 was	 con-

ducted	 at	 +0.4	V	vs.	RHE	 and	 gas	 chromatography	 used	 to	
quantify	H2	evolution	yields.	CPPE	demonstrated	the	stability	
of	the	photocathode,	which	consistently	achieved	12	h	of	catal-
ysis	(Figure	2b).	Failure	of	the	enzyme-photocathode	after	12	
h	was	likely	due	to	water	influx	into	the	encapsulated	perov-
skite,	consistent	with	previous	reports	(see	Figure	S5).13,	15	The	
stability	of	the	equivalent	PVK-Pt	device	was	found	to	be	com-
parable,	supporting	failure	of	the	perovskite	as	the	limit	to	lon-
gevity	 (Figure	 S6).	 The	 H2ase	 electrode	 generated	
258	±	55	μmol	cm−2	of	H2,	whereas	the	enzyme-free	electrode	
produced	 <1	μmolH2	cm−2	 (Figure	 2c).	 The	 FEH2	 of	
PVK|IO-TiO2|H2ase	 after	 14	h	was	 (91	±	1.5)%	with	 a	H2ase-
based	 turnover	number	 (TONH2)	of	1.9×106	and	 turnover	 fre-
quency	(TOFH2)	of	95	s−1.	

	

	

	

Figure	2.	Photoelectrochemistry	of	biohybrid	photocathode.	a)	
Representative	LSV	of	PVK|IO-TiO2|H2ase	(blue),	PVK|IO-TiO2	
(green),	PVK	(light	blue)	electrodes	with	chopped	illumination	
at	 a	 scan	 rate	 of	 10	mV	s−1.	 b)	 Representative	 CPPE	 at	
Eapp	=	+0.4	V	vs.	RHE	with	a	dark	period	lasting	5	min	following	
every	10	min	of	 light	exposure.	c)	Mean	(N	=	3)	H2	evolution	
from	CPPE	quantified	by	gas	chromatography.	Conditions:	MES	
(50	mM,	pH	6.0),	KCl	(50	mM),	DvH	[NiFeSe]	H2ase	(50	pmol),	
simulated	solar	light	back-irradiation	(AM1.5G,	100	mW	cm-2),	
N2	atmosphere,	25	°C.	

	 	

b)	

c)	

a)	
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Figure	3.	Photoelectrochemistry	of	the	tandem	device.	a)	Representative	LSV	of	PVK|TiO2|H2ase	(blue)	and	BiVO4	(green)	electrodes	
with	chopped	illumination,	forward	scan,	10	mV	s−1	scan	rate,	showing	the	absolute	current	densities.	b)	Representative	Stepped	
potential	 chronoamperometry	 of	 BiVO4||PVK|TiO2|H2ase	 (blue)	 and	 H2ase-free	 BiVO4||PVK|TiO2	 (green)	 tandem	 cells	 from	
Uapp	=	−0.6	V	to	+0.3	V.	The	current	density	at	Uapp	=	0.0	V	has	been	highlighted.	c)	Representative	CPPE	of	BiVO4||PVK|TiO2|H2ase	
(blue)	and	H2ase-free	BiVO4||PVK|TiO2	(green)	tandem	cells	at	Uapp	=	0.0	V	with	a	dark	period	lasting	5	min	following	every	10	min	
of	light	exposure.	d)	Mean	(N	=	3)	H2	(dotted	line	with	measurement	points)	and	O2	(solid	line)	evolution	from	CPPE	repeats.	Condi-
tions:	MES	(50	mM,	pH	6.0),	KCl	(50	mM),	DvH	[NiFeSe]	H2ase	(50	pmol),	simulated	solar	light	irradiation	(AM1.5G,	100	mW	cm-2),	
N2	atmosphere,	25	°C.	

 

Bias-free	 tandem	water	splitting	has	 long	been	a	desirable	
goal	for	PEC	cells.25,	31,	42,	43	Here	a	BiVO4-based	water	oxidation	
photoanode	was	prepared	by	electrodeposition	of	BiOI,	 then	
dropcasting	 and	 annealing	 a	 vanadium	precursor	 and	 finally	
spin-coating	a	layer	of	a	cobalt-containing	co-catalyst	as	previ-
ously	 reported.15,	 44	 PEC	 analysis	 of	 the	 photoanode	 (three-
electrode	 set-up;	 Figure	 S7)	 gave	 an	 onset	 potential	 of	
+0.1	V	vs.	RHE	 and	 a	 current	 density	 of	 2.4	mA	cm−2	 at	
+1.23	V	vs.	RHE.	
The	positive	onset	potential	of	the	PVK|IO-TiO2|H2ase	pho-

tocathode	 is	 essential	 for	 combination	 with	 the	 BiVO4	 pho-
toanode	to	assemble	a	tandem	water	splitting	PEC	device.	The	
BiVO4	photoanode	has	been	shown	to	absorb	wavelengths	be-
low	500	nm	and	therefore	limits	the	perovskite	to	absorption	
at	500-800	nm.15	Nevertheless,	the	BiVO4	photoanode	remains	
the	 current-limiting	 absorber	 (Figure	 3a).	 The	 robustness	 of	
the	[NiFeSe]	H2ase	toward	O2	(Figure	S4)	provided	the	possi-
bility	to	assemble	a	‘semi-artificial	leaf’,	where	the	photoelec-
trodes	were	not	separated	into	two	compartments	by	a	mem-
brane.	The	BiVO4||PVK|TiO2|H2ase	tandem	cell	(Figure	1)	was	

prepared	 and	 PEC	 analysis	 undertaken	 in	 a	 single	 compart-
ment	cell	with	illumination	through	the	front	of	the	BiVO4	pho-
toanode.	
The	 two-electrode	 device	 achieved	 a	 current	 density	 of	

1.1	mA	cm−2	 under	 bias-free	 conditions	 (Uapp	=	0.0	V)	 and	
stepped	potential	chronoamperometry	revealed	an	onset	po-
tential	of	−0.6	V	(Figure	3b).	Bias-free	CPPE	showed	a	gradual	
decrease	 in	 photocurrent	 over	 8	h,	 which	 was	 attributed	 to	
slowly	progressing	film	loss,	due	to	enzyme	inactivation,	reor-
ientation	or	desorption	(Figure	3c).	In	agreement,	the	current	
density	returned	to	almost	the	initial	value	when	a	sacrificial	
electron	acceptor	(methyl	viologen)	was	added	to	the	tandem	
PEC	cell	after	prolonged	irradiation	(Figure	S8).	The	peak	FE	of	
the	device	was	(82	±	3)%	for	H2	and	(50	±	8)%	for	O2	(Figure	
3d,	FE	over	 time;	Figure	S9).	The	 lower	FE	 for	O2	 can	be	at-
tributed	to	some	O2	reduction	at	the	photocathode	leading	to	
lower	amounts	of	O2	detected.	The	solar-to-hydrogen	efficiency	
(STH)	was	1.1%	(Equation	S1).		
The	 BiVO4||PVK|TiO2|H2ase	 cell	 produced	

21.2	±	3.2	μmolH2	cm−2	 and	 9.0	±	2.7	μmolO2	cm−2	 after	 8	h	

a) b) 

c) d) 
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CPPE,	giving	a	H2:O2	ratio	of	2.3.	The	PVK|IO-TiO2|H2ase	photo-
cathode	(Figure	S10)	and	BiVO4||PVK|TiO2|H2ase	tandem	de-
vice	 (Table	1,	Figure	S11)	 compare	 favourably	with	 state-of-
the-art	H2	production	PEC	systems	employing	earth	abundant	
molecular	 catalysts	 (synthetic	 and	 biological)	 in	 pH	 benign	
aqueous	 solution	 (see	 Tables	S1	and	S2	 for	 details).	 Three	
semi-artificial	 H2	 evolution	 photocathodes	 have	 been	 previ-
ously	 reported	 (Figure	 S10,	 colored):	 a	 [NiFeSe]	H2ase	 from	
Desulfomicrobium	baculatum	was	 introduced	onto	a	p-silicon	
(p-Si)	photoabsorber	via	an	IO-TiO2	scaffold,25	whereas	[FeFe]	
H2ases	have	been	combined	with	both	p-type	CuO2	and	black-
Si	photoabsorbers.26,	27	Of	the	systems	which	employed	small	
molecule	 catalysts	 (Figure	S10,	 grey-scale),	 a	Ni	Dubois-type	
catalyst	applied	to	a	p-Si	photoabsorber,	and	an	Fe-porphyrin	
and	polymeric	Co-based	catalysts	combined	with	a	GaP	photo-
cathode	 provide	 state-of-the-art	 performances.28,	 45,	 46	 Previ-
ously	 reported	 tandem	 earth-abundant	 molecular	 catalysed	
PEC	water-splitting	devices	have	utilized	dye-sensitized	p-type	
semiconductors	with	cobaloxime	H2	catalysts	resulting	in	STH	
values	below	0.05%	(Table	1).42	A	semi-artificial	 tandem	cell	
with	a	hydrogenase	cathode	was	wired	to	an	organic	dye-	pho-
tosystem	II	photoanode,	with	a	STH	of	0.14%	at	0.3	V	applied	
bias.31,	47	However,	the	only	previously	reported	hydrogenase	
photocathode	in	a	tandem	cell	employed	a	p-Si	photoabsorber	
and	achieved	a	STH	of	0.006%	for	bias-free	water	splitting.25	
The	 unassisted	 solar-to-fuel	 conversion	 of	 the	
BiVO4||PVK|TiO2|H2ase	tandem	device	was	also	more	efficient	
than	previous	bacterial	bio-hybrid	systems.48	The	PVK-H2ase	
system	 presented	 here	 showed	 a	 superior	 performance	 to	
equivalent	 earth-abundant	molecular	 artificial	 and	biological	
catalyst	systems	reported	to	date.	
	
Table	1.	Solar-to-fuel	efficiencies	of	 state-of-the-art	 tan-
dem	devices	that	employ	immobilised	earth	abundant	mo-
lecular	H2	catalysts,	a	bacterial	catalyst	and	an	analogous	
Pt	device.	

System	 Tandem	cell	 Solar-
to-fuel	
/	%	

Product	 ref	

Platinum	 BiVO4	||	PVK|Pt	 0.35	 H2	 15	

Synthetic	
	

Ru|OD|TiO2	||		
NiO|OD|Co	

0.05	 H2		 42	

	
TaON|CoOx	||		
CuGaO2|	OD|Co	

0.0054	 H2	 47	

Enzymatic	
	

IO-TiO2|OD|POs-
PSII	
||	IO-ITO|H2ase	

0.14	
(0.3	 V	
bias)	

H2	 31	

	 BiVO4	 ||	
p-Si|IO-TiO2|H2ase	 0.006	 H2	 25	

	 BiVO4	 ||	
PVK|IO-TiO2|H2ase	 1.1	 H2	 This	

work	
Bacterial	
	

TiO2	 ||	 Si|TiO2|S.	
Ovata	 0.38	 Acetate	 48	

OD	=	organic	dye.	See	Table	S2	for	details.	

	
In	conclusion,	the	combination	of	a	biocatalyst	with	a	mois-

ture	 sensitive	 perovskite	 photoabsorber	 has	 been	 accom-
plished	 and	 this	 bio-material	 hybrid	 has	 subsequently	 been	
employed	 in	 overall	 tandem	 solar	 water	 splitting.	 The	

perovskite-H2ase	photocathode	was	realized	by	(i)	encapsulat-
ing	the	perovskite	using	a	eutectic	alloy,	metal	foil	and	epoxy	
resin,	 and	 (ii)	 integrating	 the	 enzyme	 into	 a	 hierarchical	 IO-
TiO2	scaffold.	The	PVK|IO-TiO2|H2ase	system	achieved	bench-
mark	 performance	 for	 photocathodes	 driven	 by	 earth	 abun-
dant	 catalysts	 with	 a	 current	 density	 of	 ‒5	mA	cm−2	 at	
0.0	V	vs.	RHE,	a	positive	onset	of	+0.8	V	vs.	RHE,	a	H2	produc-
tion	yield	of	258	±	55	μmolH2	cm−2	and	a	H2ase-based	TONH2	of	
1.9×106.	A	bias-free	semi-artificial	water	splitting	H2	evolution	
device	was	produced	using	the	PVK|IO-TiO2|H2ase	photocath-
ode	and	a	water	oxidising	BiVO4	photoanode.	In	a	single	com-
partment	 ‘leaf’	 configuration,	 the	 tandem	 PEC	 system	 was	
shown	 to	 be	 potential	 generating	with	 an	 onset	 potential	 of	
−0.6	V	and	a	solar-to-hydrogen	efficiency	of	1.1%.	This	work	
provides	a	new	benchmark	for	photocathodes	and	tandem	PEC	
devices	 employing	 earth-abundant	 molecular	 H2	 production	
catalysts.	This	system	demonstrates	the	potential	for	bias-free	
fuel	production	and	establishes	perovskites	as	a	suitable	pho-
toelectrode	material	for	the	integration	of	biocatalysts.	
	

ASSOCIATED CONTENT  

Supporting Information 
The	 Supporting	 Information	 is	 available	 free	 of	 charge	 on	
the	ACS	Publications	website	at	DOI:			
	

Experimental	 procedures,	 photovoltaic	 parameters	 of	 perov-
skite	cells,	SEM	of	IO-TiO2	electrode,	3D	representation	of	the	
[NiFeSe]	 H2ase	 enzyme,	 protein	 film	 voltammetry	 of	 Ti|IO-
TiO2|H2ase	electrode,	photoelectrochemistry	of	the	BiVO4	pho-
toanode,	 additional	 tandem	 device	 studies	 and	 performance	
comparison	 radar	 plots	 and	 tables	 of	 state-of-the-art	 photo-
cathodes	and	tandem	devices.	

AUTHOR INFORMATION 

Corresponding Author 
*reisner@ch.cam.ac.uk	

Author Contributions 
E.E.M.,	 V.A.	 and	 E.R.	 designed	 the	 project.	 E.E.M	 synthesized	
and	characterized	 the	 IO-TiO2	material,	 encapsulated	 the	de-
vices	and	carried	out	 the	electrochemistry	and	photoelectro-
chemistry.	V.A.	prepared	and	characterized	the	perovskite	so-
lar	cells	and	the	BiVO4	photoanodes.	S.Z.	and	I.A.C.P.	expressed,	
purified	 and	 characterized	 the	 DvH	 [NiFeSe]	 hydrogenase.	
E.E.M.,	V.A.	and	E.R.	analyzed	the	data.	E.E.M.	and	E.R.	wrote	the	
manuscript	 with	 contributions	 and	 discussions	 from	 all	 au-
thors.	E.R.	supervised	the	research	work.	

Notes 
The	authors	declare	no	competing	financial	interests.	

ACKNOWLEDGMENT  

This	 work	 was	 supported	 by	 an	 ERC	 Consolidator	 Grant	
“MatEnSAP”	 (682833;	 to	 E.E.M.,	 E.R.)	 and	 the	 University	 of	
Cambridge	(Vice-Chancellor	and	Winton	scholarships	to	V.A.).	
We	thank	Prof	Dominic	S.	Wright	for	a	gift	of	the	TiCo	precata-
lyst.	
	
REFERENCES	
1.	 Coyle,	E.	D.;	Simmons,	R.	A.,	Understanding	the	Global	Energy	

Crisis.	Purdue	University	Press:	Lafayette,	March	2014.	

Page 4 of 6

ACS Paragon Plus Environment

ACS Energy Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

5 

2.	 Nayak,	P.	K.;		Mahesh,	S.;		Snaith,	H.	J.;	Cahen,	D.,	Photovoltaic	
solar	cell	technologies:	analysing	the	state	of	the	art.	Nat.	Rev.	Mater.	
2019,	4,	269.	
3.	 Tachibana,	 Y.;	 	 Vayssieres,	 L.;	 Durrant,	 J.	 R.,	 Artificial	

photosynthesis	for	solar	water-splitting.	Nat.	Photon.	2012,	6,	511-518.	
4.	 Dalle,	K.	E.;		Warnan,	J.;		Leung,	J.	J.;		Reuillard,	B.;		Karmel,	I.	

S.;	Reisner,	E.,	Electro-	and	Solar-driven	Fuel	Synthesis	with	First	Row	
Transition	Metal	Complexes.	Chem.	Rev.	2019,	119	(4),	2752-2875.	
5.	 Jia,	J.;		Seitz,	L.	C.;		Benck,	J.	D.;		Huo,	Y.;		Chen,	Y.;		Ng,	J.	W.	D.;		

Bilir,	 T.;	 	 Harris,	 J.	 S.;	 Jaramillo,	 T.	 F.,	 Solar	 water	 splitting	 by	
photovoltaic-electrolysis	 with	 a	 solar-to-hydrogen	 efficiency	 over	
30%.	Nat.	Commun.	2016,	7,	13237.	
6.	 Hisatomi,	 T.;	 	 Kubota,	 J.;	 Domen,	 K.,	 Recent	 advances	 in	

semiconductors	 for	 photocatalytic	 and	 photoelectrochemical	 water	
splitting.	Chem.	Soc.	Rev.	2014,	43	(22),	7520-7535.	
7.	 National	 Renewable	 Energy	 Laboratory.	

https://www.nrel.gov/pv/assets/pdfs/best-research-cell-
efficiencies.20191106.pdf	(accessed	November	2019).	
8.	 Green,	M.	A.;	 	Ho-Baillie,	A.;	Snaith,	H.	J.,	The	emergence	of	

perovskite	solar	cells.	Nat.	Photonics	2014,	8,	506-514.	
9.	 Jiang,	Q.;		Chu,	Z.;		Wang,	P.;		Yang,	X.;		Liu,	H.;		Wang,	Y.;		Yin,	

Z.;	 	Wu,	 J.;	 	 Zhang,	X.;	You,	 J.,	 Planar-Structure	Perovskite	 Solar	Cells	
with	Efficiency	beyond	21%.	Adv.	Mater.	2017,	29,	1703852.	
10.	 Kim,	 H.-S.;	 	 Hagfeldt,	 A.;	 Park,	 N.-G.,	 Morphological	 and	

compositional	progress	in	halide	perovskite	solar	cells.	Chem.	Commun.	
2019,	55,	1192-1200.	
11.	 Da,	P.;		Cha,	M.;		Sun,	L.;		Wu,	Y.;		Wang,	Z.	S.;	Zheng,	G.,	High-

performance	 perovskite	 photoanode	 enabled	 by	 Ni	 passivation	 and	
catalysis.	Nano.	Lett.	2015,	15	(5),	3452-3457.	
12.	 Correa-Baena,	 J.-P.;	 	 Abate,	 A.;	 	 Saliba,	 M.;	 	 Tress,	 W.;		

Jacobsson,	T.	J.;		Grätzel,	M.;	Hagfeldt,	A.,	The	rapid	evolution	of	highly	
efficient	perovskite	solar	cells.	Energy	Environ.	Sci.	2017,	10,	710-727.	
13.	 Crespo-Quesada,	 M.;	 	 Pazos-Outón,	 L.	 M.;	 	 Warnan,	 J.;		

Kuehnel,	 M.	 F.;	 	 Friend,	 R.	 H.;	 Reisner,	 E.,	 Metal-encapsulated	
organolead	halide	perovskite	photocathode	for	solar-driven	hydrogen	
evolution	in	water.	Nat.	Commun.	2016,	7,	12555.	
14.	 Zhang,	H.;		Yang,	Z.;		Yu,	W.;		Wang,	H.;		Ma,	W.;		Zong,	X.;	Li,	

C.,	 A	 Sandwich-Like	 Organolead	Halide	 Perovskite	 Photocathode	 for	
Efficient	 and	 Durable	 Photoelectrochemical	 Hydrogen	 Evolution	 in	
Water.	Adv.	Energy	Mater.	2018,	8,	1800795.	
15.	 Andrei,	V.;		Hoye,	R.	L.	Z.;		Crespo-Quesada,	M.;		Bajada,	M.;		

Ahmad,	S.;		Volder,	M.	D.;		Friend,	R.;	Reisner,	E.,	Scalable	Triple	Cation	
Mixed	Halide	Perovskite–BiVO4	Tandems	for	Bias-Free	Water	Splitting.	
Adv.	Energy	Mater.	2018,	8,	1801403.	
16.	 Poli,	I.;		Hintermair,	U.;		Regue,	M.;		Kumar,	S.;		Sackville,	E.	V.;		

Baker,	J.;		Watson,	T.	M.;		Eslava,	S.;	Cameron,	P.	J.,	Graphite-protected	
CsPbBr3	perovskite	photoanodes	functionalised	with	water	oxidation	
catalyst	for	oxygen	evolution	in	water.	Nat.	Commun.	2019,	10,	2097.	
17.	 Crespo-Quesada,	 M.;	 Reisner,	 E.,	 Emerging	 approaches	 to	

stabilise	 photocorrodible	 electrodes	 and	 catalysts	 for	 solar	 fuel	
applications.	Energy	Environ.	Sci.	2017,	10,	1116-1127.	
18.	 Kornienko,	N.;		Zhang,	J.	Z.;		Sakimoto,	K.	K.;		Yang,	P.;	Reisner,	

E.,	Interfacing	nature’s	catalytic	machinery	with	synthetic	materials	for	
semi-artificial	photosynthesis.	Nat.	Nanotech.	2018,	13,	890-899.	
19.	 Evans,	R.	M.;		Siritanaratkul,	B.;		Megarity,	C.	F.;		Pandey,	K.;		

Esterle,	T.	F.;		Badiani,	S.;	Armstrong,	F.	A.,	The	value	of	enzymes	in	solar	
fuels	research	–	efficient	electrocatalysts	through	evolution.	Chem.	Soc.	
Rev.	2019,	48,	2039-2052.	
20.	 Kim,	J.	H.;		Na,	D.	H.;	Park,	C.	B.,	Nanobiocatalytic	assemblies	

for	artificial	photosynthesis.	Curr.	Opin.	Biotechnol.	2014,	28,	1-9.	
21.	 Lee,	S.	H.;		Choi,	D.	S.;		Kuk,	S.	K.;	Park,	C.	B.,	Photobiocatalysis:	

Activating	 Redox	 Enzymes	 by	 Direct	 or	 Indirect	 Transfer	 of	
Photoinduced	Electrons.	Angew.	 Chem.	 Int.	 Ed.	2018,	57	 (27),	 7958-
7985.	
22.	 Tran,	 P.	 D.;	 Barber,	 J.,	 Proton	 reduction	 to	 hydrogen	 in	

biological	 and	 chemical	 systems.	 Phys.	 Chem.	 Chem.	 Phys.	 2012,	 14,	
13772-13784.	
23.	 Lubitz,	 W.;	 	 Ogata,	 H.;	 	 Rüdiger,	 O.;	 Reijerse,	 E.,	

Hydrogenases.	Chem.	Rev.	2014,	114,	4081-4148.	
24.	 Jones,	A.	K.;	 	 Sillery,	E.;	 	Albracht,	S.	P.	 J.;	Armstrong,	F.	A.,	

Direct	comparison	of	the	electrocatalytic	oxidation	of	hydrogen	by	an	
enzyme	and	a	platinum	catalyst.	Chem.	Commun.	2002,	866-867.	
25.	 Nam,	D.	H.;		Zhang,	J.	Z.;		Andrei,	V.;		Kornienko,	N.;		Heidary,	

N.;	 	 Wagner,	 A.;	 	 Nakanishi,	 K.;	 	 Sokol,	 K.	 P.;	 	 Slater,	 B.;	 	 Zebger,	 I.;		
Hofmann,	S.;		Fontecilla-Camps,	J.	C.;		Park,	C.	B.;	Reisner,	E.,	Solar	Water	

Splitting	 with	 a	 Hydrogenase	 Integrated	 in	 Photoelectrochemical	
Tandem	Cells.	Angew.	Chem.	Int.	Ed.	2018,	57,	10595-10599.	
26.	 Zhao,	Y.;	 	Anderson,	N.	C.;	 	Ratzloff,	M.	W.;	 	Mulder,	D.	W.;		

Zhu,	K.;	 	Turner,	 J.	A.;	 	Neale,	N.	R.;	 	King,	P.	W.;	Branz,	H.	M.,	Proton	
Reduction	 Using	 a	 Hydrogenase-Modified	 Nanoporous	 Black	 Silicon	
Photoelectrode.	 ACS	 Appl.	 Mater.	 Interfaces	 2016,	 8	 (23),	
14481−14487.	
27.	 Tiana,	 L.;	 	 Németh,	 B.;	 	 Berggren,	 G.;	 Tian,	 H.,	 Hydrogen	

evolution	by	a	photoelectrochemical	cell	based	on	a	Cu2O-ZnO-[FeFe]	
hydrogenase	 electrode.	 J.	 Photochem.	 Photobiol.	 A:	 Chem.	2018,	366,	
27-33.	
28.	 Leung,	J.	J.;		Warnan,	J.;		Nam,	D.	H.;		Zhang,	J.	Z.;		Willkomm,	

J.;	 Reisner,	 E.,	 Photoelectrocatalytic	 H2	 evolution	 in	 water	 with	
molecular	catalysts	immobilised	on	p-Si	via	a	stabilising	mesoporous	
TiO2	interlayer.	Chem.	Sci.	2017,	8,	5172-5180.	
29.	 Lee,	 C.	 Y.;	 	 Park,	H.	 S.;	 	 Fontecilla-Camps,	 J.	 C.;	 Reisner,	 E.,	

Photoelectrochemical	H2	Evolution	with	a	Hydrogenase	 Immobilized	
on	a	TiO2-Protected	Silicon	Electrode.	Angew.	Chem.	Int.	Ed.	2016,	55	
(20),	5971-5974.	
30.	 Mersch,	D.;		Lee,	C.-Y.;		Zhang,	J.	Z.;		Brinkert,	K.;		Fontecilla-

Camps,	J.	C.;		Rutherford,	A.	W.;	Reisner,	E.,	Wiring	of	Photosystem	II	to	
Hydrogenase	 for	 Photoelectrochemical	Water	 Splitting.	 J.	 Am.	 Chem.	
Soc.	2015,	137,	8541–8549.	
31.	 Sokol,	 K.	 P.;	 	 Robinson,	W.	 E.;	 	Warnan,	 J.;	 	 Kornienko,	N.;		

Nowaczyk,	 M.	 M.;	 	 Ruff,	 A.;	 	 Zhang,	 J.	 Z.;	 Reisner,	 E.,	 Bias-free	
photoelectrochemical	 water	 splitting	with	 photosystem	 II	 on	 a	 dye-
sensitized	 photoanode	 wired	 to	 hydrogenase.	 Nat.	 Energy	 2018,	 3,	
944-951.	
32.	 Miller,	 M.;	 	 Robinson,	W.	 E.;	 	 Oliveira,	 A.	 R.;	 	 Heidary,	 N.;		

Kornienko,	 N.;	 	 Warnan,	 J.;	 	 Pereira,	 I.	 A.	 C.;	 Reisner,	 E.,	 Interfacing	
Formate	 Dehydrogenase	 with	 Metal	 Oxides	 for	 the	 Reversible	
Electrocatalysis	and	Solar-Driven	Reduction	of	Carbon	Dioxide.	Angew.	
Chem.	Int.	Ed.	2019,	131	(14),	4649-4653.	
33.	 Wombwell,	 C.;	 	 Caputo,	 C.	 A.;	 Reisner,	 E.,	 [NiFeSe]-

Hydrogenase	Chemistry.	Acc.	Chem.	Res.	2015,	48,	2858–2865.	
34.	 Zacarias,	S.;		Véle,	M.;		Pita,	M.;		Lacey,	A.	L.	D.;		Matias,	P.	M.;	

Pereira,	 I.	 A.	 C.,	 Characterization	 of	 the	 [NiFeSe]	 hydrogenase	 from	
Desulfovibrio	vulgaris	Hildenborough.	Meth.	Enzymol.	2018,	613,	169-
201.	
35.	 Gutierrez-Sanchez,	 C.;	 	 Rudiger,	 O.;	 	 Fernandez,	 V.	M.;	 	 De	

Lacey,	A.	L.;		Marques,	M.;	Pereira,	I.	A.,	Interaction	of	the	active	site	of	
the	Ni-Fe-Se	hydrogenase	 from	Desulfovibrio	vulgaris	Hildenborough	
with	carbon	monoxide	and	oxygen	inhibitors.	J.	Biol.	Inorg.	Chem.	2010,	
15	(8),	1285-1292.	
36.	 Valente,	F.	M.	A.;	 	Oliveira,	A.	S.	F.;	 	Gnadt,	N.;	 	Pacheco,	 I.;		

Coelho,	A.	V.;		Xavier,	A.	V.;		Teixeira,	M.;		Soares,	C.	M.;	Pereira,	I.	A.	C.,	
Hydrogenases	in	Desulfovibrio	vulgaris	Hildenborough:	structural	and	
physiologic	 characterisation	 of	 the	 membrane-bound	 [NiFeSe]	
hydrogenase.	J.	Biol.	Inorg.	Chem.	2005,	10	(6),	667-682.	
37.	 Marques,	M.	C.;		Tapia,	C.;		Gutiérrez-Sanz,	O.;		Ramos,	A.	R.;		

Keller,	K.	L.;		Wall,	J.	D.;		Lacey,	A.	L.	D.;		Matias,	P.	M.;	Pereira,	I.	A.	C.,	
The	direct	role	of	selenocysteine	in	[NiFeSe]	hydrogenase	maturation	
and	catalysis.	Nat.	Chem.	Biol.	2017,	13,	544-550.	
38.	 Marques,	M.	C.;	 	Coelho,	R.;	 	De	Lacey,	A.	L.;	 	Pereira,	 I.	A.;	

Matias,	P.	M.,	The	three-dimensional	structure	of	[NiFeSe]	hydrogenase	
from	Desulfovibrio	 vulgaris	Hildenborough:	 a	hydrogenase	without	 a	
bridging	 ligand	 in	 the	active	site	 in	 its	oxidised,	"as-isolated"	state.	 J.	
Mol.	Biol.	2010,	396	(4),	893-907.	
39.	 De	 Lacey,	 A.	 L.;	 	 Gutierrez-Sanchez,	 C.;	 	 Fernandez,	 V.	 M.;		

Pacheco,	I.;	Pereira,	I.	A.,	FTIR	spectroelectrochemical	characterization	
of	 the	 Ni-Fe-Se	 hydrogenase	 from	 Desulfovibrio	 vulgaris	
Hildenborough.	J.	Biol.	Inorg.	Chem.	2008,	13	(8),	1315-1320.	
40.	 Parkin,	A.;	 	Goldet,	G.;	 	Cavazza,	C.;	 	Fontecilla-Camps,	 J.	C.;	

Armstrong,	 F.	 A.,	 The	 Difference	 a	 Se	 Makes?	 Oxygen-Tolerant	
Hydrogen	 Production	 by	 the	 [NiFeSe]-Hydrogenase	 from	
Desulfomicrobium	baculatum.	J.	Am.	Chem.	Soc.	2008,	130	(40),	13410-
13416.	
41.	 Leader,	A.;		Mandler,	D.;	Reches,	M.,	The	role	of	hydrophobic,	

aromatic	and	electrostatic	 interactions	between	amino	acid	 residues	
and	 a	 titanium	 dioxide	 surface.	 Phys.	 Chem.	 Chem.	 Phys.	 2018,	 20,	
29811-29816.	
42.	 Li,	F.;		Fan,	K.;		Xu,	B.;		Gabrielsson,	E.;		Daniel,	Q.;		Li,	L.;	Sun,	

L.,	Organic	Dye-Sensitized	Tandem	Photoelectrochemical	Cell	for	Light	
Driven	Total	Water	Splitting.	J.	Am.	Chem.	Soc.	2015,	137,	9153-9159.	

Page 5 of 6

ACS Paragon Plus Environment

ACS Energy Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

6 

43.	 Zhang,	 K.;	 	Ma,	M.;	 	 Li,	 P.;	 	Wang,	 D.	 H.;	 Park,	 J.	 H.,	Water	
Splitting	 Progress	 in	 Tandem	 Devices:	 Moving	 Photolysis	 beyond	
Electrolysis.	Adv.	Energy	Mater.	2016,	6	(15),	1600602.	
44.	 Lai,	Y.	H.;		Palm,	D.	W.;	Reisner,	E.,	Multifunctional	Coatings	

from	 Scalable	 Single	 Source	 Precursor	 Chemistry	 in	 Tandem	
Photoelectrochemical	Water	Splitting.	Adv.	Energy	Mater.	2015,	5	(24),	
1501668.	
45.	 Khusnutdinova,	D.;		Beiler,	A.	M.;		Wadsworth,	B.	L.;		Jacob,	S.	

I.;	Moore,	 G.	 F.,	Metalloporphyrin-modified	 semiconductors	 for	 solar	
fuel	production.	Chem.	Sci.	2017,	8,	253-259.	
46.	 Beiler,	A.	M.;		Khusnutdinova,	D.;		Wadsworth,	B.	L.;	Moore,	

G.	 F.,	 Cobalt	 Porphyrin–Polypyridyl	 Surface	 Coatings	 for	

Photoelectrosynthetic	 Hydrogen	 Production.	 Inorg.	 Chem.	 2017,	 56	
(20),	12178-12185.	
47.	 Windle,	C.;	 	Kumagai,	H.;	 	Higashi,	M.;	 	Brisse,	R.;	 	Bold,	S.;		

Jousselme,	B.;		Chavarot-Kerlidou,	M.;		Maeda,	K.;		Abe,	R.;		Ishitani,	O.;	
Artero,	V.,	Earth-Abundant	Molecular	Z-Scheme	Photoelectrochemical	
Cell	for	Overall	Water-Splitting.	J.	Am.	Chem.	Soc.	2019,	141	(24),	9593-
9602.	
48.	 Liu,	C.;		Gallagher,	J.	J.;		Sakimoto,	K.	K.;		Nichols,	E.	M.;		Chang,	

C.	 J.;	 	 Chang,	 M.	 C.	 Y.;	 Yang,	 P.,	 Nanowire–Bacteria	 Hybrids	 for	
Unassisted	Solar	Carbon	Dioxide	Fixation	 to	Value-Added	Chemicals.	
Nano	Lett.	2015,	15,	3634-3639.	
 

	

TOC	Artwork	

    	

Page 6 of 6

ACS Paragon Plus Environment

ACS Energy Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


