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Highlights
Plants have evolved intricate systems to
balance carbon assimilation (source
strength) and usage (sink strength), how-
ever, drought disrupts this equilibrium,
causing large losses in plant productivity.

Recently, our increasing understanding
of the molecular mechanisms underlying
plant responses to drought show that
plants that are able to maintain source
and sink strengths under stress are
To meet the food demands of an increasing world population, it is necessary to
improve crop production; a task that is made more challenging by the changing
climate. Several recent reports show that increasing the capacity of plants to
assimilate carbon (source strength), or to tap into the internal carbon reservoir
(sink strength), has the potential to improve plant productivity in the field under
water-deficit conditions. Here, we review the effects of water deficit on the
source–sink communication, as well as the respective regulatory mechanisms
underpinning plant productivity. We also highlight stress-tolerant traits that can
contribute to harness source and sink strengths towards producing high-
yielding and drought-tolerant crops, depending on the drought scenario.
more resilient and productive.
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Source and Sink Strength
Source strength (see Glossary) and sink strength underpin plant production and are influ-
enced by environmental conditions. Because recent projections estimate a continuing world pop-
ulation increase [1], plant production as a basis for food and feed needs to be significantly
increased [2]. Plant yield is influenced by agronomic practices, such as irrigation, fertilization,
and pest control, but also by the capacity of plants to capture light, to use its energy to assimilate
carbon, and to allocate this carbon into harvestable organs [3,4]. Owing to suboptimal agronomic
practices and because carbon assimilation and allocation can still be improved, crop productivity
is often far from reaching its maximum potential [3–5]. Carbon assimilation is carried out by
source organs, such as fully developed leaves, which assimilate CO2 from the atmosphere,
convert it into glucose and other sugars, and export them to sink organs, such as roots,
stem, fruits, and seeds, where they are stored and used for organ growth [6] (Figure 1A). Along
the plant life cycle, the same organ can shift from sink to source and vice versa. For example,
newly developed leaves start as carbon sinks, because they cannot assimilate enough nutrients
for their own growth, but as they develop, they assimilate excess carbon that is exported to other
growing plant organs, as such becoming carbon sources. Later in development, or under
nutrient-deficiency conditions, leaves can start to senesce and to act only as sources, exporting
sugars and other nutrients to the remaining plant organs. The same organ can also be simulta-
neously a source of a particular nutrient, but a sink for another nutrient. This can be the case of
fully developed leaves, which are at the same time sources of carbon and sinks of inorganic nitro-
gen, which is imported from the roots [7]. The nutrient movement within the plant is enabled by
the plant vascular system, namely the xylem that transports water and nutrients from the roots
to the shoots, and the phloem that mainly transports nutrients produced in the shoots to the
remaining parts of the plant [8] (Figure 1A). To ensure that the nutrients reach the organs where
they are needed, source–sink transport has to be tightly regulated.

The balance between source and sink dynamics becomes evident when one of the processes is
perturbed. On the one hand, increasing CO2 concentration [9], light quality, light intensity, or pho-
toperiod [10–12] leads to improved carbon fixation and, consequently, to enhanced plant growth
and yield [3], while growth stops shortly after carbon depletion [13], showing that plant growth is
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Glossary
Aquaporins: water channels present in
cellular membranes that facilitate water
movement within and between different
tissues.
Calvin cycle: a set of reactions
occurring in the chloroplast stroma
whereby CO2, NADPH, and ATP are
converted into triose phosphates, which
are used to produce glucose.
Cell turgor pressure: hydraulic
pressure within cells, usually reduced
under drought conditions. Guard cells
with a high turgor pressure lead to
stomatal opening, whereas lowering the
turgor pressure of guard cells causes
stomatal closure.
Osmoprotectant: soluble molecules,
such as some sugars and amino acids,
that are neutrally charged, have low
toxicity at high concentrations, and act
as osmolytes. These molecules function
to maintain the osmotic difference
between the cytosol and the extracellular
fluid.
Phloem: channels in the vasculature of
a plant, necessary to transport nutrients
assimilated by source organs to the sink
organs.
Photosystems: protein complexes
located in the thylakoid membranes of
chloroplasts that carry out the
photosynthetic light reactions. These
reactions use light energy and water to
generate ATP andNADPH necessary for
carbon assimilation in the Calvin cycle.
Reactive oxygen species (ROS):
highly reactive molecules containing
oxygen. When the photosystems and
the electron transport chain are
over-reduced, there is the production of
hydroxyl radical (•OH), hydrogen
peroxide (H2O2), and superoxide radical
(•O2

−) that can react with DNA, RNA, and
proteins causing cellular damage and
photoinhibition.
Sink organ: developing or storage
organs such as young leaves, roots,
seeds, and fruits that import nutrients
from source organs.
Sink strength: the ability of sink organs
to import nutrients and water from
source organs. This activity is
determined by size, metabolic activity,
and storage capacity of the sink organs.
Source organ: plant organs capable of
exporting nutrients or photoassimilates,
which are not needed for their own
growth, to sink organs. Mature leaves
are examples of carbon source organs.
Source strength: capacity of source
organs to assimilate CO2, convert it into
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modulated by the carbon availability in the source organs. On the other hand, an increased sink
demand promotes photosynthesis in source organs [14,15], whereas reduced sink strength
causes sugars to build up in source organs, leading to the downregulation of photosynthesis-
related genes and photosynthetic rate [7,14], indicating that the carbon requirements from the
sink organs also influence the activity of the source leaves. Thus, overall, there is a high positive
correlation between source strength (carbon assimilation and export) and sink strength (sugar
import and usage) [16].

Source and sink strengths are highly responsive to environmental changes [17], and they are par-
ticularly susceptible to water-deficit conditions [17,18]. Under mild water deficit, plant growth is
already severely impaired while photosynthesis performance is still preserved [16,19,20], indicat-
ing that when there is not enough water available for plant development, the balance between
sink and source strength is disrupted [16]. Because the decline in source and sink strengths
during water deficit leads to important reductions in crop yield [21], and drought episodes are
becoming more frequent and severe [22,23], future crop varieties have to be more resilient to
this stress. Until recently, drought-tolerant plants were often reported to have reduced growth
and yield [24,25]. Well-known examples are the overexpression of genes that confer stress toler-
ance but lead to dwarfed and less productive plants [26–28], suggesting a tradeoff between
stress resilience and yield or a side effect caused by the gene overexpression. Given that several
high-yielding, drought-tolerant varieties of wheat and rice have been reported to have the ability
to maintain growth and photosynthesis during stress [29,30], it seems clear that there is room
to tailor sink and source strengths to have highly productive, drought-tolerant crops. To better
understand how source and sink strength can be modulated to improve yield under water-deficit
conditions, we review here the current knowledge about themechanisms driving plant responses
to drought at source, transport, and sink levels individually, as well as the regulatory mechanisms
linking the source–sink relationship. Furthermore, we provide an overview on how this knowledge
is used to design drought-tolerant crops.

Drought Tolerance Is Associated with Source Strength
At the earliest stages of water deficit, there is a decrease in root water uptake, which leads to
impaired water movement within the plant, reduced cell turgor pressure, and consequently
stomatal closure [31,32] (Figure 1B). Simultaneously, the endogenous levels of the hormone
abscisic acid (ABA) increase, further signaling stomata closure. In this way, plants lose less
water through the leaves but also obtain less carbon for photosynthesis [33]. In the long term,
the reduction in CO2 available for assimilation leads to a Calvin cycle slow down [34,35], exces-
sive reduction of photosystem II, subsequent production of reactive oxygen species (ROS)
causing cellular damage [36] (Figure 1B), and consequently, reduced source strength. Despite
these mechanisms that reduce source activity, there is much evidence that source strength is
resilient to drought [16,19,20]. In rice and foxtail millet (Setaria italica), photosynthesis-related
genes are upregulated under water-deficit conditions in tolerant varieties, but downregulated in
sensitive varieties [30,37]. This upregulation of photosynthesis-related genes in tolerant plants
is thought to result in a lower reduction in photosynthetic rate during water deficit and might be
a drought tolerance strategy. In addition, maize seedlings that undergo a water-deficit period
have a higher photosynthetic rate after rewatering, compared with plants in the same develop-
mental stage but fully grown under control conditions [38]. The increased photosynthetic rate is
associated with the upregulation of photosynthesis-related genes, whichmay be a way of priming
plants to quickly respond in case of stress alleviation. There are numerous examples of
photosynthesis-related genes and proteins being either downregulated [20,39] or upregulated
[30,37,38,40–42] under water-deficit conditions. The molecular mechanisms regulating these
changes in gene expression still need to be investigated, but they are likely context dependent,
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sugars and export them to sink organs,
depending on the size, assimilation rate
and export rate of the source organ, as
well as the availability of water and
nutrients in the environment.
Xylem: constitutes part of the vascular
tissue within the plant that transports
water and nutrients taken up by the
roots to other plant organs.
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and influenced by the level of water deficit, plant species, developmental stage, and level of
drought tolerance.

Although only a few mechanisms regulating source responses to drought have been elucidated
[33–36], it seems that maintaining the level of carbon assimilation by promoting photosynthesis,
while reducing water loss (stomatal closure) and the harmful effects of ROS, may contribute to
improve drought tolerance. Recently, it was shown that constitutive overexpression of transcription
factors (TFs) from NAC (NAM, ATAF, and CUC), homeobox, and nuclear factor (NF)-Y families
[43–48], as well as overexpression of ZmNF-YB16 driven by a stress-inducible promoter [49],
leads to an increased yield under water-deficit conditions, with no yield penalty in the absence of
stress in crops grown in drought-prone areas. This drought tolerance is observed when plants
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Figure 1. Overview of the Source–Sink Relationship in the Absence or Presence of Drought. (A) In the absence of drought, stomata present in the leaf epidermis
are open (leaf inset), and CO2 is fixed into sugars by the photosynthetic reactions (chloroplast inset). These sugars are transported through the phloem (stem inset) to sink
organs such as roots (root inset), where they are stored in the vacuoles or as starch in plastids or incorporated for plant growth. (B) During drought, stomata are closed (leaf
inset) leading to reduced CO2 reaching the Calvin cycle, over reduction of photosystems and reactive oxygen species (ROS) production (chloroplast inset). Decreased
water movement through the xylem increases phloem viscosity and the sugar gradient within the phloem vessels (stem inset). In sink organs such as roots (root inset),
cell division and expansion are impaired as a result of reduced capacity to use sugars as well as lower cell turgor pressure. In the chloroplast inset, green stacked disks
represent the thylakoids and blue circular arrows represent the Calvin cycle. The greyed out chloroplast indicates photosynthesis impairment during drought. Red
circles represent sugars; wide and narrow dark blue arrows represent abundant and diminished water movement, respectively. The blue oval-like shape represents a
vacuole and the white double-headed arrow represents cell turgor pressure. Thickness of the white arrow indicates level of pressure.
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are subjected to water deficit at either the reproductive stage [44,45] or earlier, after seedling estab-
lishment, and maintained until yield parameters are evaluated [46–49]. The higher drought toler-
ance of the TF-modulated plants is associated with improved stomatal responses, reduced
photosystem damage, and a higher photosynthetic rate (Table 1). These exciting results indicate
that source adaptations to drought can be fine-tuned to improve tolerance and yield. However,
the direct targets of these TFs still need to be identified to increase the current knowledge about
the specific mechanisms driving source responses to drought, and to minimize pleiotropic effects
and potential yield penalties upon modulation of TFs [26,27]. Using tissue-specific or inducible
promoters or targeting a subset of downstream genes of these TFs may provide the way forward
to uncouple drought tolerance and yield penalty. Indeed, galactinol synthase (GOL), which is
involved in the synthesis of osmoprotectants of the raffinose family oligosaccharide class, is a
direct target of dehydration responsive element binding (DREB)2A [27], a TF from the DREB family,
Table 1. Genes and Associated Traits that Confer Drought Tolerance and Improved Yield in Field-Grown Crops

Function Gene name Species Yield in WW Yield in WD Physiology Growth Refs

Transcription factor AtEDT1/
HDG11

Rice
Cotton
Alfalfa

↑ Grain yield
↑ Tiller number

↑ Grain yield
↑ Tiller number
↑ Biomass yield

↑ Photosynthesis
↓ Stomatal density
↑ Stomatal size
↓ Stomatal conductance

↑ Root dry weight
↑ Root length
↑ Root diameter
↑ Root number
↑ Leaf area
↑ Plant height
↑ Shoot dry weight

[46–48]

HvSNAC1 Barley NA ↑ Seed number
↑ Seed weight
↑ Tiller number

↓ Stomatal conductance
↑ RWC
↑ Quantum yield

= [43]

OsNAC10 Rice ↑ Seed weight
↑ Spikelet number

↑ Seed weight
↑ Spikelet number

↑ Quantum yield
↑ Recovery after rewatering

↑ Root diameter [72]

OsNAC5 Rice ↑ Seed weight
↑ Spikelet number

↑ Seed weight
↑ Spikelet number

↑ Quantum yield ↑ Root diameter [73]

OsNAC9 Rice ↑ Grain yield ↑ Grain yield ↑ Quantum yield ↑ Root volume
↑ Root dry weight
↑ Root length
↑ Root diameter

[74]

OsTF1L Rice = ↑ Grain yield ↑ Photosynthesis
↓ Stomatal conductance
↓ Water loss
↑ Quantum yield

↑ Lignin content [44]

ZmNF-YB16 Maize ↑ Seed weight ↑ Seed weight ↑ Photosynthesis
↑ Stomatal conductance
↑ RWC
↑ Quantum yield

↑ Root length
↑ Plant height

[49]

ZmNF-YB2 Maize NA ↑ Grain yield ↑ Photosynthesis
↑ Stomatal conductance

= [45]

ZmARGOS8 Maize ↑ Grain yield ↑ Grain yield NA ↑ Plant height [106]

Enzyme AlSAP Rice ↑ Panicle number ↑ Grain yield
↑ Panicle number

↑ Photosynthesis
↓ Stomatal conductance

↑ Shoot dry weight [101]

AtGOLS2 Rice ↑ Grain yield ↑ Grain yield ↑ Photosynthesis
↑ RWC
↑ Quantum yield

↑ Plant height [50]

LOS5/ABA3 Soybean = ↑ Pod number ↓ Stomatal conductance
↑ RWC

↑ Shoot dry weight [100]

TPP1 Maize ↑ Grain yield ↑ Grain yield ↑ Photosynthesis ↑ Shoot dry weight [96,97]

Abbreviations: NA, not available; RWC: relative water content; WD, water-deficit conditions; WW, well-watered conditions. ↑, increased, =, maintained, ↓, decreased.
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which is well known to be involved in the drought response. Unlike the overexpression of DREB TFs
[26,27], the overexpression of AtGolS2 in rice shows no yield penalty in well-watered conditions in
the field, while plants have higher photosynthesis activity, increased biomass, and more panicles
during water-deficit conditions than the control plants have, resulting in an improved yield stability
[50]. Moreover, the results were obtained in two rice varieties and during different seasons, show-
ing that the beneficial effect from the overexpression of AtGolS2 is penetrant and robust [50].
Recently, targeting other components of the source strength, such as boosting recovery from
photoprotection by overexpressing Photosystem II Subunit S together with enzymes from the
xanthophyll cycle [51], or bypassing photorespiration by the introduction of alternative glycolate
metabolic pathways [52,53], significantly improved tobacco and rice productivity in the field.
Similarly, increasing the rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)
assembly led to improved carbon assimilation and growth in maize [54]. In Arabidopsis, improving
the rate of stomatal opening and closing in response to light, increases plant size and dry weight by
reducing water loss through transpiration, without compromising photosynthesis [55]. The
examples of how increased source strength leads to improved yield are exciting and it will be
pivotal to assess these plants under water-deficit conditions. It is also important to translate
findings on source strength improvement from Arabidopsis to crops and field conditions.

Drought Reduces Nutrient and Water Transport
The reduced soil water availability during drought [56] results in a decreased water movement
through the xylem, and subsequently, less water reaching the different organs [57], which de-
creases cell turgor pressure, influencing stomatal behavior [58] and cell expansion [59]. Additionally,
the diminished water flow increases phloem viscosity, which reduces sugar transport [57]. The im-
pairment in nutrient transport further affects the remaining source–sink communication, because it
contributes to sugar build-up in source organs [17], consequently reducing source strength, and to
less sugars reaching the sink organs [57], thus reducing sugar uptake and sink activity (Figure 1B).

Under water-deficit conditions, sugar transporters become more abundant [60], suggesting that
there is pressure to maintain the nutrient flow from the sources to the sinks to preserve the source
and sink strengths during drought. Nevertheless, the exact molecular mechanisms regulating this
increased abundance in sugar transporters remain elusive. Recently, a positive correlation
between transcript levels of genes encoding sucrose transporters and yield under field water-
deficit conditions was reported in wheat [61]. In addition, maize plants mutant for different
sucrose transporters showed a reduced growth and yield under field conditions, as a result of
sugar accumulation in the leaves [62,63]. However, the opposite strategy of overexpression of
sucrose transporters has not been successful to increase yield under field conditions so far
[64,65]. The overexpression of SoSUT1 driven by a strong constitutive promoter increases
sugar transport from leaves to tubers but has no effect on yield in potato [64]. Similarly, overex-
pression of AtSUT2 under the control of a phloem-specific promoter promotes sugar transport
but reduces plant growth in Arabidopsis [65]. Possible explanations may be that growth is limited
by other nutrients rather than sugars [65], or that improving sugar transport needs to be com-
bined with enhanced source and/or sink strength. Complementary to improved nutrient transport
through the phloem, water movement in the xylem and between different cell types has also the
potential to be a target for drought tolerance. Aquaporins are important regulators of the water
relations within the plant [66] and facilitate the transport not only of water, but also CO2 and neu-
trally charged solutes across cell membranes [66,67]. Recently, increasing the abundance of
these water channels in potato led to improved photosynthesis, growth, and yield under labora-
tory water-deficit conditions [67]. Although this result needs to be evaluated in the field, it sug-
gests that improving water movement during water deficit alleviates the effects of this stress at
the source and sink levels.
656 Trends in Plant Science, July 2019, Vol. 24, No. 7
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Sink Organs Are Highly Sensitive to Drought
Because water deficit has a negative effect on photosynthesis and sugar transport, it is reason-
able to think that this is the cause of the observed plant growth reduction upon drought. How-
ever, growth is often reduced prior to significant changes in photosynthesis [16,19,20]. In fact,
in grapevine, shoot length is significantly reduced even before significant changes in leaf water
potential are observed [40], emphasizing the extend of growth sensitivity to water deficit. In
several species shoot growth is more affected than root growth [68], as observed by increased
root to shoot ratios during water-deficit conditions [7,69], while in other species the root growth
is more affected than the shoot growth [7,69]. This indicates that plant growth regulation under
water-deficit conditions is organ and species dependent. Plant growth is defined by the capacity
of cells to expand and divide [70]. As drought progresses, cells tend to lose water, lowering the
turgor pressure necessary to expand; therefore, hydraulics play an important role in growth
reduction during water-deficit conditions [71]. Nonetheless, prior to the growth reduction, the
abundance of proteins associated with cell wall biosynthesis decreases [41], suggesting that be-
yond hydraulics, there are also early molecular signals involved in growth reduction. Additionally,
genes and proteins associated with other processes necessary for plant grow, such as cell cycle,
lignin biosynthesis, and protein synthesis, are also downregulated by drought [20,38,41]. It was
recently reported that, in leaves exclusively developed under water-deficit conditions, growth
reduction is caused by a decreased number of dividing cells, driven by major changes in cell
cycle genes, as well as reduced cell expansion [38,39] (Figure 1B). Reduction in shoot area
and consequently in the amount of water needed to sustain the plant may be a strategy to over-
come water-deficit conditions. Nevertheless, increased plant height and leaf area, as well as root
length and diameter, by constitutively overexpressing the homeobox TF AtEDT1/HDG11 [46–48],
ectopically expressing TFs from the NAC family using a root-specific promoter [72–74], or intro-
ducing a quantitative trait locus for deep rooting in a shallow root rice cultivar [75], is associated
with improved drought tolerance and crop yield under field conditions (Table 1), when water def-
icit is imposed after seedling establishment [46–48] or at the reproductive stage [72–75]. These
results suggest that maintaining sink activity can be beneficial in some drought scenarios and it
is possible that the severe growth reduction under drought conditions is an over-reaction,
whichmight be a good target to improve drought tolerance. Since little is known about the targets
of these TFs, it is possible that the obtained growth increase is not a direct effect of these TFs pro-
moting growth, but rather an improvement of other pathways, for instance, at the level of carbon
transport, which may alleviate the drought response. It is therefore important to uncover the mo-
lecular mechanisms directly targeted by these regulators. There are promising examples showing
that specifically increasing the sink capacity of different crops may lead to high-yielding and
drought-tolerant plants. Simultaneous overexpression of two sugar translocators in potato tubers
increases plant yield and starch content [76], which has an even greater effect on productivity
when combined with increased source strength [77]. Also, the cell cycle is a potential target to
improve the sink strength. In Arabidopsis, many genes that positively affect organ size are
involved in the regulation of cell proliferation [78], which may increase carbon usage and conse-
quently nutrient flow, but it is yet unclear whether they also affect growth under water-limiting
conditions. A notable exception is the cell-cycle-related gene SIAMESE-RELATED1, whose
mutation leads to less growth inhibition under water-deficit conditions during early plant develop-
ment [79]. However, whether and how cell cycle stimulation can improve drought tolerance is still
largely unknown and deserves further attention.

Drought Rewires the Source–Sink Regulation
In addition to the individual effects on the source–sink organs, water deficit also induces changes
in the source–sink signaling. In the presence of sufficient water, there is a balance between source
and sink capacities that is elegantly maintained by two kinases, sucrose-non-fermenting1-related
Trends in Plant Science, July 2019, Vol. 24, No. 7 657
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kinase1 (SnRK1) and target of rapamycin (TOR), in response to sugar levels (Figure 2). SnRK1
inactivates TOR and is repressed by trehalose-6-phosphate (T6P); an intermediate in the pro-
cesses of sucrose conversion into trehalose. The mechanism linking T6P and SnRK1 was elusive
until recently when T6P was found to prevent SnRK1 activation by directly binding to its catalytic
subunit, KIN10, reducing its activity and phosphorylation [80]. T6P concentration is sensitive to
changes in sugar abundance and is a precise proxy of the plant sugar status [81]. Low carbon
levels, such as when photosynthesis is impaired or growth is boosted, are reflected in reduced
T6P abundance (Figure 2A). The lower T6P concentration allows SnRK1 to repress TOR [82]
and to phosphorylate other proteins, such as enzymes and TFs that constrain the cell cycle
and cell wall formation, while promoting photosynthesis to reset the sugar levels [83,84]. Con-
versely, increasing photosynthesis or reducing growth leads to sugar accumulation (Figure 2B).
In this case, T6P represses SnRK1, allowing TOR to be active and promote growth and develop-
ment [85] by activating proteins associated with ribosomes and translation [86], as well as the
brassinosteroid pathway [25]. Moreover, carbon build-up is also sensed by hexokinase that
represses photosynthesis-related genes to reduce sugar production, while also modulating the
levels of hormones such as auxin, cytokinins, and ethylene [87]. Also, hormones like auxin and
ABA modulate the activities of the kinases SnRK1 and TOR [84,88], showing that sugar levels
(A) (B) (C)
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Figure 2. Regulation of the Source–Sink Communication by Sucrose-Non-Fermenting1-Related Kinase1
(SnRK1) and Target of Rapamycin (TOR). SnRK1 and TOR integrate sugar and hormone signaling to keep the
balance between source and sink strengths. (A) Reduced photosynthesis or increased growth deplete the sugar pools
which is reflected in a low concentration of trehalose-6-phosphate (T6P). SnRK1 becomes active, represses TOR and
phosphorylates proteins such as transcription factors (TFs) and enzymes. This downregulates high-energy-demanding
processes, such as the cell cycle and cell wall formation, and promotes energy production by targeting photosynthesis
(B) A high concentration of sugar, due to increased photosynthesis or reduced growth, increases the concentration o
T6P, which inactivates SnRK1. This inactivation allows TOR to target, for example, ribosomal proteins and hormones to
promote growth, and to repress SnRK2. High sugar levels are also sensed by hexokinase, which regulates hormone
signaling while repressing photosynthesis related genes to reduce source strength. (C) During water deficit, sugars
accumulate leading to SnRK1 inactivation. However, the hormone abscisic acid (ABA) also accumulates, activating
SnRK1, thus the contribution of SnRK1 for growth reduction under water-deficit conditions is still debated. ABA also
activates SnRK2, which in turn represses TOR and modulates stomatal closure and plant growth during water deficit
Double underline highlights the main active kinase in each scenario. The size of the letters represents abundance
Question marks indicate unclear interactors or effects. Arrows represent positive effect while truncated lines represen
negative effect.
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Outstanding Questions
Why do plants retain photosynthetic ca-
pacity, while growth is severely impaired
under drought conditions?

What are the molecular mechanisms
regulating the photosynthetic machinery
during drought?

Improving sugar transport from the
sources to the sinks is not enough to in-
crease crop yield. Can changes in sugar
transport lead to improved drought toler-
ance and yield? What is missing?

Although many TFs have been shown to
increase yield during drought, their direct
targets remain unknown. To have a
deeper understanding of the mecha-
nisms conferring drought tolerance, it is
necessary to know which genes are
being primarily regulated by these TFs.
Can these target genes then be used
to promote drought tolerance while
avoiding yield penalties?

Is SnRK1 involved in reducing growth
during drought?

Does SnRK2 also integrate drought sig-
naling from other hormones apart from
ABA?
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and hormones are tightly integrated to regulate the source and sink capacities of plants in
response to constantly changing environmental cues.

The higher concentration of ABA induced by water deficit promotes the activation of SnRK1 by
inactivating one of its repressors [89]. Thus, it is reasonable that the growth reduction upon
water deficit can be mediated by the growth repressor SnRK1 (Figure 2C). Nonetheless, under
water-deficit conditions there is an increase in sugar availability [40,90] that should repress
SnRK1 and thus promote growth. Given that growth is reduced during drought, the activation
of SnRK1 by ABA may override its inhibition by sugars or, alternatively, another mechanism reg-
ulating this process may be in place. The involvement of SnRK1 in drought responses should
therefore be further investigated. ABA also activates SnRK2 [89], which is known to mediate
the drought response [91] by phosphorylating TFs and other proteins involved in stomatal closure
and plant growth [91,92]. In addition, SnRK2 inactivates TOR under stress conditions, whereas in
the absence of stress, TOR inactivates SnRK2 [93]. These reports, together with the fact that an
effect of T6P on SnRK2 has not yet been reported [81], suggest that SnRK2 may play the role of
SnRK1 during drought, independent of the sugar levels within the plant. In addition, some mem-
bers of the SnRK2 family are known to act independently of ABA, thus integrating other signals,
which are currently not fully understood [91,94]. Recently, the overexpression of one of the ten
SnRK2 proteins present in rice increased yield under laboratory water-deficit conditions [95],
andmodulation of the T6P level in wheat andmaize improved yield in both presence and absence
of water deficit [96–98], indicating that these are important targets for plant improvement.
Abolishing the enzyme activity while retaining the protein folding of T6P phosphatases, which
phosphorylate T6P into trehalose, increases ear branching in field-grown maize without
perturbing T6P levels, suggesting that apart from enzymatic activity, T6P phosphatases may
have regulatory functions [99], expanding the complexity of metabolic regulation in plants.

Modulating different aspects of the ABA pathway has also been particularly successful. The over-
expression of ABA biosynthesis and signaling regulators leads to overall improvements in source
and sink capacity by reducing stomatal water loss, maintaining photosynthetic efficiency, and
improving growth and biomass accumulation, thus converging into improved yield and drought
tolerance in field-grown soybean and rice [100,101] (Table 1). Apart from the classical ABA-
mediated drought response, the role of other plant hormones such as auxin, cytokinins, ethylene,
gibberellins, and jasmonic acid in signaling drought responses is becoming evident [102–105].
Recently, the overexpression of ZmARGOS8, a negative regulator of the ethylene pathway
[106], led to an increased yield under control, mild, and severe water-deficit field conditions in dis-
tinct locations and different maize inbred lines [106]. The creation of new ZmARGOS8 variants
with CRISPR-Cas9 has also increased yield under water-deficit field conditions [107]. Although
the current knowledge about source–sink signaling during water deficit is still fragmentary,
these examples indicate that targeting its regulation can improve stress tolerance and yield in
field-grown crops under water-deficit conditions.

Concluding Remarks and Future Perspectives
Substantial evidence on the potential of fine-tuning source and sink strength, as well as the
source–sink communication, to obtain high-yielding drought-tolerant crops has recently been re-
ported [43–50,72–74,96,97,100,101,106]. Given the range of environments where agriculture
takes place, plants can experience very distinct drought scenarios, ranging from mild to severe
water stress, which can prevail at the beginning, middle, or at the end of the life cycle of the
plant [108,109]. Factors such as soil depth and composition, nutrient availability, and temperature
also influence the plant responses to water deficit, which can be beneficial in a given scenario
but detrimental in another [108,109]. For example, reduced water loss is more beneficial during
severe water deficit, whereas maintenance of photosynthesis is more beneficial in mild water-
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deficit conditions. To keep a high photosynthesis performance under severe water stress may
be detrimental [109]. As such, conceptualizing an ideotype for drought tolerance optimized for
a multitude of scenarios may not be possible. Still, many traits associated with drought tolerance
are similar for multiple species grown in different field conditions and can be proposed as targets
towards further crop improvement. To maximize the sink and source strengths, as well as the
water and nutrient transport, plants should have: (i) increased root length, diameter, and angle
[46,47,49,56,72–75], to allow the roots to explore deeper and harder soils; (ii) tailored xylem
and phloem, to deal with the increase in water and nutrient uptake [64,65,67]; (iii) improved
biomass accumulation, to act as a carbon reserve during the reproductive stage [46–48,50,
100,101,106], combined with enhanced carbonmobilization from the plant reserves to the devel-
oping seeds [97], to prevent grain abortion; (iv) optimal stomatal aperture and density, to reduce
the water loss through transpiration, but without compromising photosynthesis [43,44,46–48,
100,101]; and (v) increased abundance of proteins with osmoprotectant and/or ROS scavenging
activities, to maintain the efficiency of photosystem II and reduce the cellular damage caused by
ROS [43,44,50,73,74].

Obtaining drought-tolerant plants that combine individually strengthened source and sink
activities, with improved communication between source and sink organs, can be eased by
incorporating the increasing knowledge on stress-inducible and tissue-specific promoters,
as well as on the function of different post-translational modifications, with recent technolog-
ical improvements in plant modeling, high-throughput sequencing, gene stacking, CRISPR
technology, new breeding techniques and high-throughput (laboratory and field) phenotyping
platforms [110–115]. Moreover, the fact that drought tolerance is a complex trait with an in-
tricate regulatory network of kinases, TFs, and hormones, makes it pivotal to further unravel
the direct interactions between these players, as well as their downstream targets, to identify
genes that contribute to stress tolerance. This knowledge will aid us to overcome potential
yield and growth penalties, as well as to identify bottlenecks in the source–sink communica-
tion that can be targeted to improve drought tolerance and yield. A deeper understanding of
the relationship between source and sink organs, and its control during drought, particularly
the underlying molecular mechanisms, would answer open questions regarding the regula-
tion of source and sink strengths (see Outstanding Questions), while enabling the generation
of new hypotheses. Additionally, genes known to improve tolerance under laboratory water-
deficit conditions [67,95] need to be evaluated under varying field-drought scenarios, while
plants that have remarkable productivity as a result of improved source and/or sink strength
[51,52,77], must be assessed for drought tolerance. Therefore, field trial evaluations should
be standardized and made available to a broader scientific community [116] to optimize the
already available resources towards improving source and sink strengths, as well as the over-
all source–sink communication. With the increasing number of plant phenotypic evaluations
under varying environmental conditions, the challenge of standardizing data collection and
making it publicly available should also be a priority [117,118]. In this way, data can be easily
compared, reproduced, and used for meta-analysis that can aid in identifying important traits
for drought tolerance. In the end, this global effort will allow the development of the future
high-yielding, drought-tolerant crops (see Outstanding Questions).
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