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Summary

� Photosynthetic efficiency is reduced by the dual role of Rubisco, which acts either as a car-

boxylase or as an oxygenase, the latter leading to photorespiration. C4 photosynthesis

evolved as a carbon-concentrating mechanism to reduce photorespiration. To engineer C4

into a C3 plant, it is essential to understand how C4 genes, such as phosphoenolpyruvate car-

boxylase (PEPC1), are regulated to be expressed at high levels and in a cell-specific manner.
� Yeast one-hybrid screening was used to show that OsPRI1, a rice bHLH transcription factor

involved in iron homeostasis, binds to the Setaria viridis PEPC1 promoter. This promoter

drives mesophyll-specific gene expression in rice. The role of OsPRI1 in planta was character-

ized using a rice line harbouring SvPEPC1pro::GUS.
� We show that OsPRI1 activates the S. viridis PEPC1 promoter by binding to an N-box in

the proximal promoter, and that GUS activity is highly reduced in SvPEPC1pro::GUS lines

when OsPRI1 is mutated. Cross-species comparisons showed that the SvPRI1 homolog binds

to the SvPEPC1 promoter but the maize ZmPRI1 does not bind to the ZmPEPC1 promoter.
� Our results suggest that elements of the iron homeostasis pathway were co-opted to regu-

late PEPC1 gene expression during the evolution of some but not all C4 species.

Introduction

Rice is the staple food crop for more than half of the world’s
population (Maclean et al., 2013). In a climate change scenario,
regions with warm and dry seasons are predicted to increase,
creating a new constraint on agro-industrial systems. Combined
with an increasing population, this presents a huge challenge to
plant research (Godfray et al., 2010) because crop production
must be improved under adverse environmental conditions. C4

photosynthesizing plants are higher yielding in warm dry envir-
onments than their C3 counterparts because the C4 pathway gen-
erates a higher carbon concentration around the central carbon
fixing enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase
(Rubisco). This concentrating mechanism suppresses the
enzyme’s oxygenase activity and consequently eliminates the
energetically wasteful process of photorespiration (Sage et al.,
2012). Understanding the molecular mechanisms underlying the
regulation of the C4 carbon concentrating shuttle is crucial
for engineering C4 metabolism into C3 plants such as rice. Pre-
dictions indicate that engineering C4 photosynthesis into rice
could lead to a 50% increase in photosynthetic efficiency, which
should translate into a substantial increase in grain yield (von
Caemmerer et al., 2012).

Phosphoenolpyruvate carboxylase (PEPC) is a critical enzyme
in the C4 cycle, because it is responsible for the initial fixation of

CO2 (Svensson et al., 2003). In comparison with PEPC enzymes
in C3 plants, C4 pathway PEPCs have altered enzyme kinetics
and accumulate specifically in leaf mesophyll cells. It is this
mesophyll-specific accumulation profile that enables an initial
carbon fixation step to occur in the absence of Rubisco, which
accumulates specifically in the bundle sheath cells of C4 leaves
(Hatch & Slack, 1966). Notably, all of the enzymes required for
C4 metabolism can be found in ancestral C3 species (Sage
et al., 2012). The evolution of the C4 pathway occurred in multi-
ple independent occasions (Sage, 2004). This required the inno-
vation or co-option of mechanisms to ensure that genes,
encoding C4 enzymes, are either transcriptionally or post-
transcriptionally regulated in the appropriate cell type.

Zea mays (maize) and Setaria viridis (setaria) represent two
independent origins of the C4 pathway, with both species belong-
ing to the so-called PACMAD clade of grasses, in which there are
multiple origins of C4 (Grass Phylogeny Working Group II,
2012). By contrast, there are no C4 species in the sister (BEP)
clade, which includes Oryza sativa (rice; Grass Phylogeny Work-
ing Group II, 2012). It has been shown that a number of PEPC
promoters from C4 grass species drive mesophyll-specific gene
expression in rice, indicating that the trans-regulatory network
required for cell-specificity is present in rice (Matsuoka et al.,
1994; Ku et al., 1999; Gupta et al., 2020). Although cis-elements
in a number of different C4 PEPC promoters have been
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characterized (Stockhaus et al., 1997; Gowik et al., 2004; Akyil-
diz et al., 2007; Gupta et al., 2020), the knowledge of transcrip-
tion factors (TFs) that bind C4 PEPC1 promoters is restricted
to maize, where five have been identified (Yanagisawa & Sheen,
1998; G�orska et al., 2019, 2021). The only known TF from rice
that has been shown to bind to C4 PEPC1 promoter is
OsbHLH112, an homologue of ZmbHLH80 and ZmbHLH90,
which have been reported as regulators of ZmPEPC1pro in maize
(G�orska et al., 2019).

The value of C4 PEPC1 promoters for biotechnological
approaches in rice has already been demonstrated in the C4 Rice
project, where different PEPC promoters were used to drive
expression of genes encoding the mesophyll-specific enzymes of
the C4 cycle (Ermakova et al., 2021). Although mesophyll-
specificity was achieved, the high expression level that charac-
terizes C4 PEPC promoter activity in C4 species was not. It is
thus important to understand the trans factors that regulate C4

promoters in rice to facilitate a better manipulation of gene activ-
ity for biotechnological applications.

Here, we used yeast one-hybrid (Y1H) assays to identify a
bHLH TF from rice that activates expression of the S. viridis
PEPC1 gene promoter. Activation was confirmed in planta in rice
using promoter-reporter fusions. The known role of this bHLH
in C3 plants, and the fact that its setaria homolog binds to the
SvPEPC1 gene promoter, allows to hypothesize a link between
iron sensing/homeostasis and the C4 photosynthetic metabolism
in setaria.

Materials and Methods

Setaria virdis genomic DNA purification

Setaria virdis (L.) P.Beauv (var. ME034V) genomic DNA
(gDNA) was isolated using a sodium dodecyl sulphate (SDS)
extraction protocol. Briefly, gDNA was isolated from 2-wk-old
seedling material ground in liquid nitrogen, 200 ll of extraction
buffer (250 mM Tris–HCl (pH 7.5), 25 mM ethylenediaminete-
traacetic acid (EDTA), 250 mM NaCl and 1% (v/v) SDS) was
added to 25 mg of tissue followed by centrifugation at 12 000 g
for 10 min. The aqueous phase was then transferred to a new
tube, and 0.8 volumes of isopropanol were added. The mixture
was incubated at room temperature (RT) for 10 minutes followed
by centrifugation at 12 000 g for 10 min. The supernatant was
discarded and the pellet was washed twice with 200 ll of 70%
ethanol and allowed to dry completely. gDNA was resuspended
in 50 ll of ddH2O with 10 lg ml�1 RNase A.

Cloning the Setaria virdis PEPC1 promoter

The SvPEPC1 (Sevir.4G143500) promoter, �1190 bp from the
ATG, was amplified by PCR using primers with attB adaptors
(Supporting Information Table S1). After analysis by gel electro-
phoresis, the PCR products were cloned into the pJet1.2/blunt
cloning vector, using a CloneJet PCR cloning Kit (Thermo
Fisher), and then, the inserted DNA was sequenced. The insert
was then sub-cloned into the pDONR221 entry vector using the

Gateway cloning system (Thermo Fisher). Subsequently, the
insert was sub-cloned into a modified pHGWFS7 vector to create
reporter constructs expressing the b-glucuronidase (GUS ) repor-
ter gene under the control of the SvPEPC1 promoter. Vector
pHGWFS7 (Karimi et al., 2002) was modified so that the hptII
gene is expressed under the control of the rice Actin promoter iso-
lated from pANIC6B expression vector (Mann et al., 2011).

Rice transformation

Rice (Oryza sativa L. cv Kitaake) genetic transformation was
performed following the protocol described by the Langdale
Lab (https://langdalelab.files.wordpress.com/2018/06/kitaake-rice-
transformation.pdf). Briefly, dehulled and surface disinfected rice
seeds were placed in callus initiation media (R1 – 4.3 g l�1 MS
salts and vitamins, 30 g l�1 sucrose, 0.5 g l�1 MES, 300mg l�1

casamino acid, 2.8 g l�1 L-proline, 2 mg l�1 2,4-D, 4 g l phytagel,
pH 5.8) for 2 wk in continuous light at 32°C, to initiate callus for-
mation. Afterwards, calli were sub-cultured to fresh R1 for 3 d fol-
lowed by incubation with Agrobacterium tumefaciens (strain
EHA105; Wise et al., 2006), harbouring the construct of interest.
Following Agrobacterium transformation, calli were grown in co-
cultivation media (R2 – 4.3 g l�1 MS salts and vitamins, 30 g l�1

sucrose, 0.5 g l�1 MES, 10 g l�1 glucose, 300 mg l�1 casamino
acid, 2 mg l�1 2,4-D, 4 g l�1 phytagel, 20mg l�1 acetosyringone,
pH 5.2) on top of sterile filter paper for 3 d in the dark at RT.
Hygromycin-resistant calli were selected on selection medium (R3
– 4.3 g l�1 MS salts and vitamins, 30 g l�1 sucrose, 0.5 g l�1 MES,
300 mg l�1 casamino acid, 2.8 g l�1 L-proline, 2 mg l�1 2,4-D,
4 g l�1 phytagel, 200mg l�1 timentin and 30mg l�1 hygromycin,
pH 5.8) for 2 wk in continuous light at 32°C, followed by a sec-
ond round of selection in the same conditions. Plant regeneration
was achieved by growing hygromycin-resistant calli on regenera-
tion medium (R4 – 4.3 g l�1 MS salts and vitamins, 30 g l�1

sucrose, 0.5 g l�1 MES, 2 g l�1 casamino acid, 30 g l�1 sorbitol,
2 mg l�1 kinetin, 1 mg l�1 NAA, 200mg l�1 timentin, 20mg l�1

hygromycin and 4 g l�1 phytagel, pH 5.8) in rounds of 2-wk cul-
ture in continuous light at 32°C. Regenerated plants were assessed
by PCR for the presence of the hygromycin resistance gene
(hptII ). Positive plants were transferred into soil and grown in a
growth chamber at 28°C with a 12 h : 12 h, light : dark photoper-
iod and light intensity of 400 lmol m�2 s�1.

To obtain loss-of-function OsPRI1 alleles, single-guide RNAs
(sgRNA) were designed using the web-based tool CRISPR-P
(http://crispr.hzau.edu.cn/CRISPR2/) with default settings. For
rice transformation, sgRNAs were synthesized with BsaI-
compatible overhangs (Table S1) and cloned into a modified
CRISPR-Cas9 expression vector (Miao et al., 2013) under the
control of a U3 promoter. The modified CRISPR-Cas9 expres-
sion vector contained the neomycin phosphotransferase (nptII )
gene, allowing for the selection of rice calli using G418
(150 mg l�1). In order to investigate the function of OsPRI1 reg-
ulating SvPEPC1pro in rice, the rice reporter line SvPEPC1pro::
GUS (previously obtained as described above in the cv Kitaake)
was used as background for the OsPRI1 knockout, using the
CRISPR/Cas9 technology. Alternatively, we could have crossed a
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rice reporter line SvPEPC1pro::GUS (cv Kitaake) with the ospri1
mutants (cv Nipponbare) already reported (Zhang et al., 2017),
but since they have different backgrounds this would make the
cross more complicated.

To evaluate putative Cas9 edits (indels), the targeted region of
the OsPRI1 gene was amplified by PCR using primers listed in
Table S1 and sequenced. DNA sequence comparisons allowed
the identification of mutations resulting from Cas9 activity.
DNA sequence deconvolution was performed using the TIDE
software (http://tide.nki.nl) with default settings. Transgenic
plant lines with indels causing frameshift mutations were propa-
gated until homozygous mutations were obtained in transgene
(CRISPR-Cas9 cassette)-free lines.

Yeast one-Hybrid

Yeast bait strains containing three different overlapping frag-
ments of the SvPEPC1 promoter (F1: �1 to �300 bp; F2: �200
to �600 bp; F3: �500 to �1190 bp, from the ATG) were con-
structed. The SvPEPC1 promoter fragments were amplified from
the promoter by PCR, using primers listed in Table S1. Using
NotI (NarI for F2) and SpeI restriction sites included in the pri-
mer sequence, promoter fragments were cloned into the
pINT/HIS vector system (Ouwerkerk & Meijer, 2001) and inte-
grated into the Y187 yeast strain (Takara Bio, Shiga, Japan).
Titration with 3-amino triazole (3-AT), a competitive inhibitor
of the HIS3 reporter gene product, was performed for all bait
strains to determine the concentration needed to counter any
nonspecific expression of the reporter gene. All experiments were
performed in a synthetically defined (SD) medium (Takara Bio)
with experimentally defined concentrations of 3-AT.

Bait strains were transformed with a salt-induced rice cDNA
expression library available in the host laboratory (Almeida et al.,
2017). Yeast transformation was performed as described in the
YEASTMAKERTM protocol (Takara Bio). Briefly, cells were cul-
tivated overnight at 30°C in YPDA medium and collected by
centrifugation at 300 g for 10 min. Pellets were washed twice
with sterile water and competent cells were obtained using
1.19 TE/LiAc solution (10 mM Tris–HCl, 1 mM EDTA,
100 mM Lithium acetate, pH 7.5). Competent cells were incu-
bated at 30°C with 800 ng of library plasmid DNA and 100 ng
of carrier DNA (Takara Bio) for 30 min, followed by the addi-
tion of PEG/LiAc solution (40% (w/v) polyethylene glycol
(PEG), 100 mM LiAc), and incubated at 42°C for 15 min.
Transformed cells were plated on SD lacking leucine and histi-
dine, with previously determined concentrations of 3-AT, and
incubated for 3 d at 30°C. To calculate transformation efficiency,
1 : 100 and 1 : 1000 dilutions were plated (SD/�L) and colony-
forming units (CFU) were counted after 3 d. For each bait strain
over 1 million clones were screened (F1 – 1.839 106 CFU; F2 –
3.759 106 CFU; F3 – 1.059 106 CFU). To confirm OsPRI1
interactions, the pDEST22 expression vector containing OsPRI1
cDNA, empty vector, or a nonrelated TF (the bHLH TF
OsPIF14 (Cordeiro et al., 2016) was used as the negative con-
trol.), were each transformed into the yeast bait strain. pDEST22
expression vectors were created using the Gateway technology.

Isolation of PEPC promoters and identification of TF
homologues

Two overlapping fragments (spanning -1000 bp from the ATG)
of the PEPC promoter from Dichanthelium oligosanthes (Schult)
Gould (Do021545) andOryza sativa (OsPEPC1- LOC_Os02g14770
and OsPEPC4- LOC_Os01g11054) were synthesized by Twist Bios-
ciences according to the available sequences, with overhangs compati-
ble for cloning into the pINT/HIS vector system as described before,
using NotI and SpeI restriction enzymes. Homologues for OsPRI1
in maize (GRMZM2G017586 and GRMZM2G093744), setaria
(Sevir.6G068300) and dichanthelium (OEL18192) were identified
using OrthoFinder (Emms & Kelly, 2019). The identified ortholo-
gues were synthesized according to available DNA sequences. TF
DNA sequences were cloned into pDONR221 and sub-cloned into
pGADT7, using the Gateway system.

Recombinant protein production

For recombinant protein purification, OsPRI1 was fused to the C-
terminal of the maltose-binding protein (MBP), by sub-cloning into
the pMAL-C2X expression vector, adapted for gateway cloning,
using the LR gateway technology. Escherichia coli strain Rosetta
(DE3) pLysS was used for the expression of recombinant proteins.
Cells transformed with pMAL::MBP-OsPRI1 were grown at 37°C
overnight, in Luria-Bertani medium (LB) to an OD600� 0.4.
Induction of MBP-OsPRI1 expression was performed using
0.8mM IPTG, after which cultures were grown for 4 h at 16°C.

Cells were collected by centrifugation at 4000 g for 10min and
then lysis buffer (100mM KHPO4, 0.25mM MgCl2, 1mM phe-
nylmethylsulfonyl fluoride (PMSF), 19 Protease Inhibitor Complete
(Roche), 0.1mgml�1 Lysozyme, 0.1mgml�1 DNAse) was added
to the pellet on ice. Cell debris was removed by centrifugation at
14 000 g for 1 h at 4°C. MBP and MBP-OsPRI1 recombinant pro-
teins were purified by affinity chromatography using MBPTrap HP
(GE Healthcare, Chicago, IL, USA) and HiLoad 16/600Superdex
200 pg columns (GE Healthcare). Recombinant protein purification
was assessed by SDS-PAGE.

Radioactive electrophoretic mobility shift assay

DNA probes were designed to include putative bHLH binding sites
(cis-elements) plus flanking regions, defined here as 13 nucleotides to
either side of the element. Putative bHLH binding sites were identi-
fied by scanning the promoter fragment for ‘CANNTG’,
‘GTNNAC’, ‘CACGGC’, ‘CGGCAC’, ‘CACGAG’ and ‘GAC-
GAC’. Probes used in this study are described in Table S2.

Single-stranded oligos were annealed in labelling buffer (10mM
Tris–HCl pH 8, 50mM NaCl and 1mM Na2EDTA pH8) by
incubation at 95°C for 5min, and reactions were allowed to cool
down to RT. DNA probes were radiolabelled with ATP [c-32P]
(Perkin-Elmer, Waltham, MA, USA) using T4 polynucleotide
kinase (PNK; Sigma-Aldrich). Ten picomoles of double-strand
DNA probe was incubated with T4 PNK at 37°C for 60min, and
the reaction was stopped by addition of 0.5M EDTA followed by
15min incubation at 75°C. Unincorporated ATP was removed
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using Sephadex G-25 columns following the manufacturer’s instruc-
tions (Sigma-Aldrich). Radiolabelling was confirmed using a Geiger
counter.

Protein-DNA incubation was conducted in binding buffer
(1 mM HEPES pH 7.9, 4 mM KCl, 0.1 mM EDTA, 1 mM
DTT, 50 ng herring sperm DNA, 0.05% (w/v) BSA, 10% (w/v)
glycerol) at 30°C for 1 h, using 1 lg of recombinant protein and
5 pmol of labelled probe. For competition assays, unlabelled
probe (‘cold’) was used in 6009 molar excess.

Reactions were loaded onto NativePAGE 4 to 16% precast
gels (Invitrogen), and electrophoresis was run at 50 V for 3 h at
4°C in an X-Cell SureLockTM Mini-Cell system. Radioactivity
detection was performed using a phosphor screen, imaged with
Fuji TLA-5100.

Isolation and transformation of rice protoplasts

Protoplasts were obtained as described in G�orska et al. (2021). Rice
protoplasts were isolated from rice cell suspension culture or etiolated
seedlings. Rice suspension cell cultures were grown for 4 d, and cells
were collected by centrifugation in a ‘swing-out’ rotor at 150 g for
5min. The digestion solution (0.4M mannitol, 10mM MES
pH5.7, 1mM CaCl2, 0.1% BSA, 50mg L-1 ampicillin, 5mM b-
mercaptoethanol, 2.25% (w/v) Cellulase R10 (Duchefa, Haarlem,
the Netherlands), 0.75% (w/v) Macerozyme R10 (Duchefa)) was
added to the cell pellet or to the etiolated seedling pieces, and the
samples were vacuum infiltrated. Digestion was performed for 5 h
with 80 RPM orbital agitation at RT. The enzyme solution contain-
ing protoplasts was filtered through a 100 lm mesh, washed with 1
volume of wash solution (154mM NaCl, 125mM CaCl2, 5mM
KCl, 2mM MES pH 5.7) and filtered again through a 50 lm filter.
Protoplasts were harvested by centrifugation in a ‘swing-out’ rotor
(150 g, 5 min) and resuspended in 200 ll MMg solution (0.4M
mannitol, 4mM MES pH 5.7, 15mM MgCl2). Afterwards, proto-
plasts were diluted to a 19 106 cells ml�1 concentration and per-
meabilized with polyethylene glycol 4000 (PEG 4000). Protoplasts
were transformed by gently mixing 200 ll of protoplast solution
with 10 ll of plasmid mix (2 lg of effector plasmid and 3 lg of
reporter plasmid) and 220 ll PEG solution (PEG 4000 40%, 0.4M
mannitol, 0.1M CaCl2). Protoplasts were incubated at RT in the
dark for 20min before being diluted with three volumes of wash
solution, harvested by centrifugation in a ‘swing-out’ rotor (150 g,
5 min) and resuspended in 750 ll incubation solution (0.4M man-
nitol, 4mMMES pH 5.7, 20mM KCl). After this, protoplasts were
incubated for 15–16 h at RT in the dark. Finally, protoplasts were
collected by centrifugation at 150 g for 3min at RT and the pellet
was flashed frozen in liquid nitrogen.

Transactivation assay in rice cultured-derived protoplasts

Protoplasts were co-transformed with an effector plasmid
(p2GW::OsPRI1 or p2GW::Empty) and a reporter plasmid
(pGreenII-LUC:: SvPEPC1pro _F3, F2, F1 or pGreenII-LUC::
Empty). Transformed protoplasts were lysed by the addition of
100 ll of Passive lysis buffer (Promega), followed by two freeze–
thaw cycles. Luciferase activity assays were performed using the

Dual-Luciferase Reporter System (Promega), with a modified
protocol. Briefly, 40 ll of LarII solution was added to 20 ll of
protoplast lysate and Luciferase (LUC) activity was measured for
15 s. Immediately after, 40 ll of Stop&Glow solution was added
to the same sample and Renilla (REN) activity was measured for
15 s. Measurements were performed using FluoStar fluorometer
(BMG Labtech, Ortenberg, Germany). Transcriptional activity
was defined as the LUC : REN ratio.

Plant growth conditions and gas exchange measurements

Plants were grown in hydroponics using Yoshida medium (1.4mM
NH4NO3, 370 lm NaH2PO4, 512 lM K2SO4, 998 lM CaCl2,
1.6 mM MgSO4, 9.5 lM MnCl2, 0.075 lM (NH4)6Mo7O24,
0.152 lM ZnSO4, 19 lM H3BO3, 0.16 lM CuSO4, 100 lM
FeNaEDTA, 70.7 lM citric acid, pH 5.4). Growth conditions were
set at constant 28°C with a 12 h : 12 h, light : dark photoperiod
with 800 lmolm�2 s�1 light intensity. Rice seedlings were grown
for 2 wk in Yoshida medium, with a medium change every week. In
order to subject the rice seedlings to iron deficiency, we removed
FeNaEDTA from the Yoshida medium.

Photosynthetic measurements were performed using a Li6800
(LiCOR Biosciences, Lincoln, NE, USA) with the following ambi-
ent settings: [CO2]R at 400 ppm, light intensity 800 PAR, RH at
50–60%. The last fully expanded leaf of each plant was allowed to
acclimate to chamber conditions before measurements were
recorded. Data analysis was performed using GraphPad Prism 8.

Analysis of gene expression inOspri1mutant lines

Samples were collected at ZT4 (4 h from light initiation), which cor-
responds to the SvPEPC1pro::GUS activity peak (Fig. S1). Three bio-
logical replicates were collected for each line, each biological sample
representing a pool of three plants. Samples were macerated in liquid
nitrogen and RNA was extracted using Direct-zol Miniprep (Zymo
Research, Irvine, CA, USA), following the manufacturer’s instruc-
tion. gDNA was removed using a Turbo DNA-free kit (Invitrogen),
following the manufacturer’s instructions. RNA was quantified by
spectrophotometry and integrity verified by agarose electrophoresis.
Five hundred nanograms of total RNA was used for reverse tran-
scription. The cDNA was synthesized using Transcriptor first-strand
cDNA synthesis kit (Roche), following the manufacturer’s instruc-
tions and an anchored oligo (dT)18 primer. The qPCR was per-
formed using LightCycler SYBR Green I Master mix (Roche) and
gene-specific primers (listed in Table S1). Peroxiredoxin-2C
(PRXIIc, LOC_Os01g4842) was used as a housekeeping gene. Data
analysis was performed using GraphPad Prism 8.

Histological GUS detection

To analyse the cell-specific activity of SvPEPC1pro::GUS in the repor-
ter lines (with or without OsPRI1 mutated), fully expanded leaves
from 2-wk-old seedlings were hand-sectioned to obtain transverse
leaf sections. GUS activity was detected using the 5-bromo-4-chloro-
3-indolyl-beta-D-glucuronic acid cyclohexylammonium salt (X-
Gluc) cleavage assay. Samples were incubated in 90% ice-cold
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acetone for 1 h at �20°C followed by a wash with 100mM phos-
phate buffer (NaPO4; pH 7.6) and then incubated with staining
solution (2mM X-Gluc, 100mM phosphate buffer, 10mM EDTA,
6mM ferrocyanide, 6mM ferricyanide) at 37°C for 1 h. A vacuum
was applied to ensure uniform infiltration of the staining solution.
After staining, samples were fixed by incubating in ethanol : acetic
acid (3 : 1) solution for 1 h and then stored in 70% ethanol. Images
were obtained using a Leica DM 6000B optical microscope (Leica,
Wetzlar, Germany) and analysed using IMAGEJ software.

Results

The rice bHLH transcription factor OsPRI1 binds to a N-box
in the Setaria viridis PEPC1 promoter

The main goal of this work was to identify new rice TFs regulat-
ing a C4 PEPC promoter in rice and to characterize their

biological function in rice and in a C4 plant. Since the PEPC1
promoter from S. viridis is known to drive cell-specific gene
expression in rice (Gupta et al., 2020), and S. viridis is a C4 plant
with a short live cycle and relatively easy to transform, we selected
the PEPC1 promoter from setaria for this study. To identify
potential regulators of the S. viridis PEPC1 gene promoter
(SvPEPC1pro) in rice, fragments of the promoter were used as bait
in a Y1H screen with a rice cDNA expression library. Among the
18 putative interactors identified (Table S3), only one was a TF,
identified by sequence analysis as OsPRI1. Direct Y1H assays
suggested that OsPRI1 binds to three separate regions (F1, F2
and F3) of the SvPEPC1pro sequence (Fig. 1a,b). Transcription
factors from the bHLH family are known to bind both E-boxes
and N-boxes (Li et al., 2006), but little is known regarding the
nucleotide preference of each protein, with new softwares emer-
ging to predict TF targets (e.g. Yan et al., 2022; Cheng
et al., 2023). The S. viridis PEPC1 promoter sequence contains

Fig. 1 OsPRI1 binds to the Setaria viridis PEPC1
promoter. (a) Schematic representation of three
overlapping fragments of the SvPEPC1 promoter
used as baits in a Yeast one-hybrid (Y1H) screen-
ing of a rice cDNA expression library. (b) Direct
yeast one-hybrid (Y1H) assay to test the interac-
tion of OsPRI1 with the three SvPEPC1 promoter
fragments. Increasing 3-amino triazole (3-AT)
concentrations were used to eliminate yeast
growth caused by nonspecific interactions.
Empty pGAD vector and pGAD containing an
unrelated bHLH (OsPIF14) were used as nega-
tive controls. (c) Electrophoretic mobility shift
assay was performed using radiolabelled probe
(‘Hot’) containing a N-Box motif (CACGAG),
positioned as represented in panel A (probe 14 in
Supporting Information Fig. S2), and a mutated
form of the motif. Purified MBP-OsPRI1 and
MBP proteins alone were used to test the inter-
action. Nonlabelled DNA (‘Cold’) was used for
competition assays to confirm the specificity of
the interaction.
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seven different E-Boxes and two different N-Boxes variants, mak-
ing a total of 17 putative bHLH binding sites (Fig. S2). Binding
of OsPRI1 to probes for each of these 17 sites was tested in Elec-
trophoretic mobility shift assays (EMSA; Fig. S2). No binding
was observed for the probes present in the F2 and F3 regions, but
shifts were observed with four probes in the F1 region (probes
11–14; Fig. S2). Further assays using mutated and nonlabelled
probes showed that, among these four probes, only probe 14 is
specifically bound by OsPRI1 (Figs 1c, S2). We thus conclude
that OsPRI1 interacts with SvPEPC1pro by binding to a N-Box
(CACGAG) positioned at -153 bp before the ATG in the
SvPEPC1 sequence, although other cis-elements may also play a
role in the regulation of SvPEPC1pro by OsPRI1.

OsPRI1 activates SvPEPC1 promoter activity in transient
protoplast assays

To test whether the binding of OsPRI1 to the SvPEPC1 promo-
ter is functionally relevant, the three fragments where OsPRI1
was shown to bind in Y1H assays were cloned upstream of a
LUC reporter gene and rice protoplasts were co-transformed with
reporter (F1-3::LUC) and effector (OsPRI1) constructs. Fig. 2
shows that OsPRI1 acts as an activator when the LUC reporter
gene is driven by the F1 and F2 fragments but not by the F3 frag-
ment. It is not clear whether activation via the F1 region is
through the N box identified by EMSA, but it is notable that
higher levels of activation are observed with the F2 region (three-
fold vs twofold with F1), in which no specific binding site could
be identified.

OsPRI1 regulates the SvPEPC1 promoter in planta

Given that in vitro and transient assays were indicative of a func-
tional interaction between OsPRI1 and SvPEPCpro, we next
sought to determine whether the interaction occurred in planta.
It is notable that TFs have previously been identified as binding
to different C4 PEPC1 promoters, but their function has never
been validated in planta (Hibberd & Covshoff, 2010). In order
to investigate the function of OsPRI1 regulating SvPEPC1pro
activity in rice, we have used a rice reporter line for the S. viridis
PEPC1 promoter (SvPEPC1pro::GUS ) to edit OsPRI1. CRISPR-
Cas9 was then used to obtain Ospri1 loss-of-function mutants in
the SvPEPC1pro::GUS background. Three independent ospri1
mutations were obtained, each causing frameshifts that are pre-
dicted to form truncated proteins lacking the bHLH domain
(Figs 3a, S3). To determine the impact of loss of OsPRI1 func-
tion on SvPEPCpro activity, GUS reporter gene expression was
assayed by quantitative reverse transcription polymerase chain
reaction (RT-PCR). Fig. 3b shows that GUS transcript levels
were reduced by half relative to wild-type (WT) in all of the
Ospri1 mutant lines. Substantially less GUS activity was also
observed in histological assays of leaf sections (Fig. 3c). However,
some enzyme activity was detectable in mesophyll cells of Ospri1
mutant plants (Fig. S4). When photosynthetic efficiency was
assessed, only one Ospri1 mutant line showed changes as com-
pared to WT, indicating that the trait is not related to the Ospri1
mutation but rather to the transgene insertion or with somaclonal
variation resulting from the tissue-culture-based rice transforma-
tion (Fig. S3). This result reveals that OsPRI1 is not involved in

Fig. 2 OsPRI1 activates the Setaria viridis PEPC1
promoter in rice protoplasts. (a) Schematics of
constructs transformed into rice protoplasts.
Each of the SvPEPCpro fragments (F1 to F3) was
fused to a minimal 35S promoter to drive
expression of the Luciferase (LUC ) gene. The
reporter constructs also contained the Renilla
(REN ) gene under the control of a complete 35S
promoter. Reporter constructs containing just
the minimal 35S promoter upstream of LUC
were used as controls. Effector plasmids
containedOsPRI1 driven by the maize ubiquitin
promoter (ZmUbipro) or empty vector (EV) as a
control. (b) Constructs were co-transformed into
rice protoplasts in the combinations indicated.
Transactivation is shown as the ratio of LUC :
REN activity for each protoplast transformation.
Data were normalized for each reporter con-
struct transformed with the empty vector. Error
bars represent SEM. Statistical significance was
tested using unpaired t-test (***, P < 0.001;
n = 4–5).
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rice photosynthetic efficiency. Altogether, our results show
that OsPRI1 is an important activator of SvPEPC1pro in planta,
but loss of function is not sufficient to completely disrupt
SvPEPC1pro activation or to impair cell-specificity, and OsPRI is
not necessary for the C3 photosynthesis.

OsPRI1 does not interact with the rice PEPC promoter

To assess how OsPRI1 and the cis-elements where it binds in the
SvPEPC1 promoter have been modified during the evolution of C4

photosynthesis, we first identified PEPC1 promoter sequences from
two C4 plants with independent C4 origins (Z. mays and S. viridis),
a C3 member of the PACMAD clade (D. oligosanthes), and rice, a

member of the BEP clade. For rice, the promoter of both
OsPEPC1 and OsPEPC4 were included in the analysis because
OsPEPC1 has been identified as the closest in sequence to C4

PEPCs (Yamamoto et al., 2022) and OsPEPC4 is specifically
expressed in mesophyll cells (Masumoto et al., 2010). We also
identified OsPRI1 homologues in Z. mays (GRMZM2G017586
and GRMZM2G093744), S. viridis (Sevir.6G068300) and D. oli-
gosanthes (OEL18192; Fig. S5). Y1H assays were then carried out
using fragments of each PEPC promoter as bait (Fig. 4a) in combi-
nation with each of the PRI1 proteins. Fig. 4(b) shows that
OsPRI1 does not interact with the OsPEPC or DoPEPC promoter
fragments, suggesting that the interaction between OsPRI1 and
SvPEPCpro resulted from a C4 innovation associated with S. viridis,

Fig. 3 OsPRI1 activates the Setaria viridis PEPC1
promoter in rice. (a) Schematic representation of
OsPRI1 gene showing exons (grey boxes), the
bHLH motif (black boxes) and three independent
mutations with indels that create frameshift
mutations. Single-guide RNAs are highlighted in
bold. (b) GUS transcript levels were analysed by
reverse transcription-quantitative polymerase
chain reaction (RT-qPCR) as a proxy for SvPEPC1
promoter activity. Reporter indicates the
SvPEPC1pro::GUS reporter line, which was used
as the background to generate theOspri1
mutants, Nonedited indicates SvPEPC1pro::GUS
lines that were transformed with CRISPR-Cas9
but that were not edited by Cas9. Statistical sig-
nificance was tested using an unpaired t-test (**,
P < 0.01; ***, P < 0.001; n = 3). (c) Transverse
leaf sections from different rice lines (nonedited
andOspri1mutants) showing GUS activity in the
mesophyll cells. Leaf sections were incubated for
1 h at 37°C in staining solution and cleared
before imaging.
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Fig. 4 Interaction between PRI1 and PEPC promoters was not pre-established in C3 ancestors. (a) Schematic representation of the PEPC promoters in C4

(Setaria viridis and Zea mays) and C3 (Oryza sativa and Dichanthelium oligosanthes) grasses used in this study. (b) Interaction between the PEPC promo-
ters and PRI1 homologues was tested using a direct yeast one-hybrid approach. Results are shown in the presence of histidine (His +) and in the absence of
histidine (His �) with the addition of 3-amino triazole (3-AT; 5 mM for DoPEPC1_F1, ZmPEPC1_5U; 10mM forOsPEPC4_F1) when required to deplete
nonspecific interactions. Red lines in the cladogram indicate C4 branches.
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and possibly with other C4 species in the same evolutionary clade,
that changed cis-elements in the promoter. On the basis that
cis-elements in the SvPEPCpro are a C4 innovation, binding of
OsPRI1, SvPRI1 and ZmPRI proteins to those sequences suggests
little variation in the TF activity as C4 plants evolved. However,
the lack of SvPEPCpro binding by the DoPRI1 protein is an anom-
aly because S. viridis is more closely related to D. oligosanthes than
rice, and the SvPRI1 protein binds to the DoPEPCpro. Finally, the
failure of any of the PRI proteins to bind the ZmPEPCpro, suggests
that cis-changes in the promoter occurred in a lineage-specific
manner.

Discussion

OsPRI, a TF regulating the C4 SvPEPC promoter activity in
rice

Recent attempts to engineer C4 metabolism into rice demonstrate
that C4 PEPC1 promoters are an important biotechnological
tool, since they drive mesophyll-specific expression of adjacent
genes. Nevertheless, the expression levels obtained with these pro-
moters were lower than that found in C4 plants (Ermakova
et al., 2021). This observation highlights the importance of
understanding the gene regulatory networks upstream of promo-
ter function, in order to better manipulate expression levels in
transgenic plants. To date, a single rice TF, OsbHLH112, has
been shown to regulate a C4 PEPC1 promoter (G�orska
et al., 2019). OsbHLH112 was shown to bind an E-box motif in
the ZmPEPC1 promoter and to activate its activity. In this work,
we were able to identify a new rice TF, OsPRI1, which binds to a
C4 PEPC1 promoter. We have shown that OsPRI1 binds the
SvPEPC1 promoter through a N-box motif and that it works as
an activator (Figs 1, 2), albeit not on its own. Both, the transcript
level of the reporter gene as well as the corresponding GUS activ-
ity in Ospri1 mutants, indicate that other activators may also
modulate SvPEPC1 promoter activity (Figs 3, S4). We thus
hypothesize that OsPRI1 is required to promote high levels of
SvPEPC1 promoter activity in rice rather than being a regulator
of cell-specific gene expression. It is worth noting that elevated
PEPC expression level is one of the key traits in C4 plants, but it
is considered to have preceded C4 evolution (Sage, 2004).

The PRI1 network may have been co-opted during
evolution to regulate C4 photosynthesis in Setaria viridis

C4 gene expression patterns are proposed to have evolved using
pre-existing gene networks, with changes in promoter sequences
underpinning innovations rather than changes in the pre-existing
gene networks (Matsuoka et al., 1994; Gupta et al., 2020). We
tested whether this hypothesis was true for the evolution of
PRI1-PEPC1 promoter interactions. We observed that PRI1-
DNA interactions were dependent on both trans and cis sequence
composition (Fig. 4). Moreover, our results indicate that PRI1
has been co-opted as a PEPC1 regulator in the S. viridis lineage
but not in the Z. mays lineage. Since the N-box where OsPRI1
binds in the SvPEPC1 promoter is conserved in the PEPC1

promoter from Urochloa maxima (Fig. S6), which is known to
drive mesophyll-specific gene expression in rice (Gupta
et al., 2020), we hypothesize that OsPRI1 can bind the
UmPEPC1 promoter. However, the Panicum miliceum PEPC1
promoter, which also drives mesophyll-specific expression in rice,
does not contain the same N-box (Fig. S6). What’s more,
OsPRI1 does not bind to the OsPEPC4 promoter, which is also
known to drive mesophyll-specific expression in rice (Masumoto
et al., 2010). Together, these results suggest that the evolution of
high levels of mesophyll cell-specific PEPC expression is likely to
have occurred through the co-option of different cis and trans fac-
tors in the independent C4 evolution events.

OsPRI1 was described as a major player in iron response net-
works in rice, regulating several iron response genes and being
regulated by a major iron sensor (Zhang et al., 2017). Notably,
iron levels are important regulators of proteins involved in the
electron transport chain of photosystems in C3 plants and ILR3,
the OsPRI1 homologue in Arabidopsis, regulates levels of photo-
system proteins in the Cytb6f and PSI complexes (Li et al.,
2019). We show that loss of OsPRI1 function has no influence
on the carbon assimilation capacity or on photosystem efficiency
in rice (Fig. S3). In addition, we observed that iron levels do not
affect SvPEPC1pro activity in rice (Fig. S3). We thus conclude
that the relationship between ILR3 and photosystem function is
not conserved in rice, and that if any relationship exists between
PRI1 and photosynthesis, it might be a C4 novelty.

It would now be interesting to understand how the mis-
expression of PRI1 homologues in C4 plants affects the function
of the C4 cycle. We have attempted to obtain PRI1 loss-of-
function mutants in S. viridis, using the CRISPR/cas9 system,
but none of the transgenic plants obtained were edited. To over-
come this issue and to get a better understanding of the gene reg-
ulatory networks where PRI1 is involved, it is important to
overexpress PRI1 in both the reporter rice line (SvPEPC1pro::
GUS ) and in S. viridis. These tools would be extremely valuable
to unveil the molecular mechanisms underlying the evolution of
the gene regulatory network from C3 to C4.
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